Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 11(6): e1004946, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26083346

RESUMO

Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA). Efficient functioning of the endoplasmic reticulum (ER) is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to "ER stress" and activation of the "unfolded protein response" (UPR). Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR) which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host.


Assuntos
Células Epiteliais/metabolismo , Proteína Fosfatase 1/metabolismo , Infecções por Pseudomonas/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Fatores de Virulência/metabolismo , Western Blotting , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/fisiologia , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Mucosa Respiratória/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Elife ; 42015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25774599

RESUMO

Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR.


Assuntos
Actinas/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Estresse Fisiológico , Sequência de Aminoácidos , Animais , Sequência Conservada , Depsipeptídeos/farmacologia , Drosophila melanogaster , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteína Fosfatase 1/química , Estresse Fisiológico/efeitos dos fármacos
3.
Elife ; 42015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25774600

RESUMO

Dephosphorylation of eukaryotic translation initiation factor 2a (eIF2a) restores protein synthesis at the waning of stress responses and requires a PP1 catalytic subunit and a regulatory subunit, PPP1R15A/GADD34 or PPP1R15B/CReP. Surprisingly, PPP1R15-PP1 binary complexes reconstituted in vitro lacked substrate selectivity. However, selectivity was restored by crude cell lysate or purified G-actin, which joined PPP1R15-PP1 to form a stable ternary complex. In crystal structures of the non-selective PPP1R15B-PP1G complex, the functional core of PPP1R15 made multiple surface contacts with PP1G, but at a distance from the active site, whereas in the substrate-selective ternary complex, actin contributes to one face of a platform encompassing the active site. Computational docking of the N-terminal lobe of eIF2a at this platform placed phosphorylated serine 51 near the active site. Mutagenesis of predicted surface-contacting residues enfeebled dephosphorylation, suggesting that avidity for the substrate plays an important role in imparting specificity on the PPP1R15B-PP1G-actin ternary complex.


Assuntos
Actinas/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteína Fosfatase 1/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Domínio Catalítico , Bovinos , Sequência Conservada , Cricetinae , Cricetulus , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Fosforilação , Coelhos , Especificidade por Substrato
4.
Cancer Cell ; 25(5): 563-73, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24823636

RESUMO

The combination of relative nutrient deprivation and dysregulation of protein synthesis make malignant cells especially prone to protein misfolding. Endoplasmic reticulum stress, which results from protein misfolding within the secretory pathway, has a profound effect on cancer cell proliferation and survival. In this review, we examine the evidence implicating endoplasmic reticulum dysfunction in the pathology of cancer and discuss how recent findings may help to identify novel therapeutic targets.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Neoplasias/metabolismo , Dobramento de Proteína , Fator 6 Ativador da Transcrição/metabolismo , Antineoplásicos/uso terapêutico , Ácidos Borônicos/uso terapêutico , Bortezomib , Proliferação de Células , Sobrevivência Celular , Retículo Endoplasmático/patologia , Endorribonucleases/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neovascularização Patológica , Proteínas Serina-Treonina Quinases/metabolismo , Pirazinas/uso terapêutico , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa