Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Mol Pharmacol ; 93(4): 376-386, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29436492

RESUMO

There is abundant evidence for formation of G protein-coupled receptor heteromers in heterologous expression systems, but little is known of the function of heteromers in native systems. Heteromers of δ and κ opioid receptors (DOR-KOR heteromers) have been identified in native systems. We previously reported that activation of DOR-KOR heteromers expressed by rat pain-sensing neurons (nociceptors) produces robust, peripherally mediated antinociception. Moreover, DOR agonist potency and efficacy is regulated by KOR antagonists via allosteric interactions within the DOR-KOR heteromer in a ligand-dependent manner. Here we assessed the reciprocal regulation of KOR agonist function by DOR antagonists in adult rat nociceptors in culture and in a behavioral assay of nociception. Naltrindole enhanced the potency of the KOR agonist 2-(3,4-dichlorophenyl)-N-methyl-N-[(1S)-1-phenyl-2-pyrrolidin-1-ylethyl]acetamide (ICI-199441) 10- to 20-fold, but did not alter responses to 2-(3,4-dichlorophenyl)-N-methyl-N-[(1R,2R)-2-pyrrolidin-1-ylcyclohexyl]acetamide (U50488). By contrast, the potency of U50488 was enhanced 20-fold by 7-benzylidenenaltrexone. The efficacy of 6'-guanidinonaltrindole (6'-GNTI) to inhibit nociceptors was blocked by small interfering RNA knockdown of DOR or KOR. Replacing 6'-GNTI occupancy of DOR with either naltrindole or 7-benzylidenenaltrexone abolished 6'-GNTI efficacy. Further, peptides derived from DOR transmembrane segment 1 fused to the cell membrane-penetrating HIV transactivator of transcription peptide also blocked 6'-GNTI-mediated responses ex vivo and in vivo, suggesting that 6'-GNTI efficacy in nociceptors is due to its positive allosteric regulation of KOR via occupancy of DOR in a DOR-KOR heteromer. Together, these results provide evidence for the existence of functional DOR-KOR heteromers in rat peripheral sensory neurons and that reciprocal, ligand-dependent allosteric interactions occur between the DOR and KOR protomers.


Assuntos
Analgésicos Opioides/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Gânglio Trigeminal/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides delta/fisiologia , Receptores Opioides kappa/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Gânglio Trigeminal/fisiologia
2.
Int J Neuropsychopharmacol ; 21(10): 962-977, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085126

RESUMO

Constitutive receptor activity/inverse agonism and functional selectivity/biased agonism are 2 concepts in contemporary pharmacology that have major implications for the use of drugs in medicine and research as well as for the processes of new drug development. Traditional receptor theory postulated that receptors in a population are quiescent unless activated by a ligand. Within this framework ligands could act as agonists with various degrees of intrinsic efficacy, or as antagonists with zero intrinsic efficacy. We now know that receptors can be active without an activating ligand and thus display "constitutive" activity. As a result, a new class of ligand was discovered that can reduce the constitutive activity of a receptor. These ligands produce the opposite effect of an agonist and are called inverse agonists. The second topic discussed is functional selectivity, also commonly referred to as biased agonism. Traditional receptor theory also posited that intrinsic efficacy is a single drug property independent of the system in which the drug acts. However, we now know that a drug, acting at a single receptor subtype, can have multiple intrinsic efficacies that differ depending on which of the multiple responses coupled to a receptor is measured. Thus, a drug can be simultaneously an agonist, an antagonist, and an inverse agonist acting at the same receptor. This means that drugs have an additional level of selectivity (signaling selectivity or "functional selectivity") beyond the traditional receptor selectivity. Both inverse agonism and functional selectivity need to be considered when drugs are used as medicines or as research tools.


Assuntos
Agonismo de Drogas , Agonismo Inverso de Drogas , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos
3.
J Pharmacol Exp Ther ; 359(3): 411-419, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27660244

RESUMO

Opioid receptors expressed by peripheral pain-sensing neurons are functionally inactive for antinociceptive signaling under most basal conditions; however, tissue damage or exposure to inflammatory mediators (e.g., bradykinin) converts these receptors from a nonresponsive state to a functionally competent state. Here we tested the hypothesis that the basal, nonresponsive state of the mu- and delta-opioid receptors (MOR and DOR, respectively) is the result of constitutive receptor activity that activates desensitization mechanisms, resulting in MOR and DOR receptor systems that are constitutively desensitized. Consistent with our previous findings, under basal conditions, neither the MOR agonist [d-Ala2,N-MePhe4,Gly-ol5]-enkephalin nor the DOR agonist [d-Pen2,5]-enkephalin, inhibited prostaglandin E2 (PGE2)-stimulated cAMP accumulation in peripheral sensory neurons in culture (ex vivo) or inhibited PGE2-stimulated thermal allodynia in the rat hind paw in vivo. Prolonged treatment with naloxone induced MOR and DOR responsiveness both in vivo and ex vivo to a similar magnitude as that produced by bradykinin. Also similar to bradykinin, the effect of naloxone persisted for 60 minutes after washout of the ligand. By contrast, prolonged treatment with 6ß-naltrexol, did not induce functional competence of MOR or DOR but blocked the effect of naloxone. Treatment with siRNA for ß-arrestin-2, but not ß-arrestin-1, also induced MOR and DOR functional competence in cultured peripheral sensory neurons. These data suggest that the lack of responsiveness of MOR and DOR to agonist for antinociceptive signaling in peripheral sensory neurons is due to constitutive desensitization that is likely mediated by ß-arrestin-2.


Assuntos
Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Bradicinina/farmacologia , Agonismo Inverso de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Masculino , Naloxona/farmacologia , Nociceptividade/efeitos dos fármacos , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Células Receptoras Sensoriais/efeitos dos fármacos , beta-Arrestina 2/deficiência , beta-Arrestina 2/genética
4.
J Pharmacol Exp Ther ; 359(2): 319-328, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27605628

RESUMO

A single administration of the κ opioid receptor (KOR) antagonist, norbinaltorphimine (norBNI), produces long-term reduction in KOR function in heterologous expression systems and brain that is mediated by activation of c-Jun N-terminal kinase (JNK). In this study, we examined the long-term effects of norBNI on adult rat peripheral sensory neurons in vivo and ex vivo. Following a single intraplantar (i.pl.) injection of norBNI into the hind paw, peripheral KOR-mediated antinociception in the ipsilateral, but not the contralateral, hindpaw was abolished for at least 9 days. By contrast, the antinociceptive response to mu and delta opioid receptor agonists was unaltered. The long-term inhibitory effect on antinociception produced by pretreatment with norBNI required occupancy of peripheral KOR and was completely blocked by i.pl. injection of the JNK inhibitor, SP600125. In cultures of peripheral sensory neurons, norBNI activated JNK for at least 30 minutes. Furthermore, norBNI blocked KOR-mediated inhibition of adenylyl cyclase activity measured 24 hours later in a JNK-dependent manner, but did not block activation of extracellular signal-regulated kinase (ERK). The long-term inhibitory effect of norBNI on KOR function in vivo and ex vivo was blocked by inhibitors of mRNA translation, cycloheximide and rapamycin. These data suggest that in peripheral sensory neurons norBNI is a KOR-biased ligand for activation of JNK signaling, resulting in long-term blockade of some (antinociception, inhibition of adenylyl cyclase activity), but not all (ERK), KOR signaling. Importantly, norBNI elicits de novo protein synthesis in sensory neuron terminals that produces selective long-term regulation of KOR.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Naltrexona/análogos & derivados , Biossíntese de Proteínas/efeitos dos fármacos , Receptores Opioides kappa/antagonistas & inibidores , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Animais , Dinoprostona/farmacologia , Ativação Enzimática/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Ligantes , Masculino , Naltrexona/metabolismo , Naltrexona/farmacologia , Naltrexona/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores Opioides kappa/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/enzimologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
5.
Appl Microbiol Biotechnol ; 100(11): 5165-76, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27052381

RESUMO

Bio-hydrogen production from mixed culture fermentation (MCF) of glucose was studied by conducting a comprehensive product measurement and detailed mass balance analysis of their contributions to the final H2 yield. The culture used in this study was enriched on glucose at 60 °C through a sequential batch operation consisting of daily glucose feeds, headspace purging and medium replacement every third day in serum bottles for over 2 years. 2-Bromoethanesulfonate (BES) was only required during the first three 3-day cycles to permanently eliminate methanogenic activity. Daily glucose feeds were fully consumed within 24 h, with a persistent H2 yield of 2.7 ± 0.1 mol H2/mol glucose, even when H2 was allowed to accumulate over the 3-day cycle. The measured H2 production exceeded by 14 % the theoretical production of H2 associated with the fermentation products, dominated by acetate and butyrate. Follow-up experiments using acetate with a (13)C-labelled methyl group showed that the excess H2 production was not due to acetate oxidation. Chemical formula analysis of the biomass showed a more reduced form of C5H11.8O2.1N1.1 suggesting that the biomass formation may even consume produced H2 from fermentation.


Assuntos
Meios de Cultura/química , Fermentação , Temperatura Alta , Hidrogênio/metabolismo , Acetatos/metabolismo , Ácidos Alcanossulfônicos/química , Anaerobiose , Técnicas de Cultura Celular por Lotes , Biomassa , Reatores Biológicos/microbiologia , Butiratos/metabolismo , Dióxido de Carbono/metabolismo , DNA Bacteriano/isolamento & purificação , Glucose/metabolismo , Microbiologia Industrial , Modelos Teóricos , Análise de Sequência de DNA , Thermoanaerobacterium/metabolismo
6.
J Biol Chem ; 289(32): 22117-27, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24962572

RESUMO

GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17ß-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIß regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , AMP Cíclico/biossíntese , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Ancoragem à Quinase A/química , Proteínas de Ancoragem à Quinase A/genética , Animais , Células CHO , Linhagem Celular , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Cães , Técnicas de Silenciamento de Genes , Guanilato Quinases/química , Guanilato Quinases/genética , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Biológicos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Domínios PDZ , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
7.
J Pharmacol Exp Ther ; 353(1): 44-51, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25637601

RESUMO

The regulation of opioid receptor system function in peripheral sensory neurons is not well understood. Opioid agonist efficacy to inhibit nociceptor function and to promote antinociception is generally weak under basal conditions and frequently no response occurs. However, in response to a cyclooxygenase-dependent metabolite of arachidonic acid (AA) after exposure to inflammatory mediators, such as bradykinin (BK) or exogenous AA, peripheral opioid receptor systems become much more responsive to opioid agonists. In this study, we examined the time course for the induction and maintenance of functional competence of the δ-opioid receptor (DOR) system in adult rat nociceptors in culture and in vivo. We found that the responsive state of DOR after pretreatment with BK or exogenous AA is transient (30-60 minutes) and persists for 15-30 minutes after a 15-minute exposure of nociceptors to BK or AA. Interestingly, whereas functional competence of the DOR system could be reinduced with a second application of BK 60 minutes after the first, responsiveness of the DOR system could not be reinduced after an initial exposure to AA. This nonresponsive state of DOR after exogenous AA was mediated by a lipoxygenase (LOX)-dependent metabolite of AA. Intraplantar carrageenan also produced transient DOR functional competence and responsiveness was also reinduced by inhibition of LOX. Thus, the DOR system expressed by peripheral sensory neurons is under dual regulation by cyclooxygenase- and LOX-dependent metabolites of AA.


Assuntos
Ácido Araquidônico/metabolismo , Receptores Opioides delta/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Ácido Araquidônico/farmacologia , Bradicinina/farmacologia , Células Cultivadas , AMP Cíclico/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/farmacologia , D-Penicilina (2,5)-Encefalina/farmacologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Masculino , Ratos Sprague-Dawley , Receptores Opioides delta/agonistas , Células Receptoras Sensoriais/efeitos dos fármacos , Gânglio Trigeminal/citologia
8.
J Pharmacol Exp Ther ; 355(2): 174-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26297384

RESUMO

Activation of kappa opioid receptors (KORs) expressed by peripheral sensory neurons that respond to noxious stimuli (nociceptors) can reduce neurotransmission of pain stimuli from the periphery to the central nervous system. We have previously shown that the antinociception dose-response curve for peripherally restricted doses of the KOR agonist (-)-(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide (U50488) has an inverted U shape. Here, we found that the downward phase of the U50488 dose-response curve was blocked by an inhibitor of extracellular signal-regulated kinase (ERK) activation U0126. Local administration of the selective KOR agonist salvinorin A (Sal-A), also resulted in an inverted U-shaped curve; however, the downward phase was insensitive to U0126. By contrast, inhibition of c-Jun N-terminal kinase (JNK) partially blocked the downward phase of the dose-response curve to Sal-A, suggesting a role for JNK. In cultures of peripheral sensory neurons, U50488 and Sal-A inhibited adenylyl cyclase activity with similar efficacies; however, their ability to activate ERK and JNK differed. Whereas U50488 activated ERK but not JNK, Sal-A activated JNK but not ERK. Moreover, although both U50488 and Sal-A produced homologous desensitization, desensitization to U50488 was blocked by inhibition of ERK activation, whereas desensitization to Sal-A was blocked by inhibition of JNK. Substitution of an ethoxymethyl ether for the C2 position acetyl group of Sal-A reduced stimulation of JNK, prevented desensitization by ethoxymethyl ether for the C2 position acetyl group of Sal-A, and resulted in a monotonic antinociception dose-response curve. Collectively, these data demonstrate the functional selectivity of KOR ligands for signaling in peripheral sensory neurons, which results in differential effects on behavioral responses in vivo.


Assuntos
(trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Diterpenos Clerodânicos/farmacologia , Receptores Opioides kappa/agonistas , Células Receptoras Sensoriais/efeitos dos fármacos , Gânglio Trigeminal/citologia , Animais , Butadienos/farmacologia , AMP Cíclico/metabolismo , Dinoprostona/farmacologia , Relação Dose-Resposta a Droga , Temperatura Alta , Hiperalgesia/fisiopatologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Nitrilas/farmacologia , Cultura Primária de Células , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
9.
Biotechnol Bioeng ; 112(6): 1177-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25545692

RESUMO

It is well established that metabolic pathways in the fermentation of organic waste are primarily controlled by dissolved H2 concentrations, but there is no reported study that compares observed and predicted shifts in fermentation pathways induced by manipulating the dissolved H2 concentration. A perfusion system is presented that was developed to control dissolved H2 concentrations in the continuous fermentation of glucose by a culture highly enriched towards Thermoanaerobacterium thermosaccharolyticum (86 ± 9% relative abundance) from an originally diverse consortia in the leachate of a laboratory digester fed with municipal solid waste. Media from a 2.5 L CSTR was drawn through sintered steel membrane filters to retain biomass, allowing vigorous sparging in a separate chamber without cellular disruption. Through a combination of sparging and variations in glucose feeding rate from 0.8 to 0.2 g/L/d, a range of steady state fermentations were performed with dissolved H2 concentrations as low as an equivalent equilibrated H2 partial pressure of 3 kPa. Trends in product formation rates were simulated using a H2 regulation partitioning model. The model correctly predicted the direction of products redistribution in response to H2 concentration changes and the acetate and butyrate formation rates when H2 concentrations were less than 6 kPa. However, the model over-estimated acetate, ethanol and butanol productions at the expense of butyrate production at higher H2 concentrations. The H2 yield at the lowest dissolved H2 concentration was 2.67 ± 0.08 mol H2 /mol glucose, over 300% higher than the yield achieved in a CSTR operated without sparging.


Assuntos
Meios de Cultura/química , Glucose/metabolismo , Hidrogênio/metabolismo , Resíduos Sólidos , Thermoanaerobacterium/crescimento & desenvolvimento , Thermoanaerobacterium/metabolismo , Acetatos/metabolismo , Butanóis/metabolismo , Butiratos/metabolismo , Etanol/metabolismo , Fermentação , Modelos Estatísticos
10.
J Pharmacol Exp Ther ; 349(3): 526-32, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24706985

RESUMO

Numerous studies have demonstrated that females have a higher risk of experiencing several pain disorders with either greater frequency or severity than males. Although the mechanisms that underlie this sex disparity remain unclear, several studies have shown an important role for sex steroids, such as estrogen, in the modulation of nociception. Receptors for estrogen are present in primary afferent neurons in the trigeminal and dorsal root ganglia, and brief exposure to estrogen increases responses to the inflammatory mediator bradykinin (BK). However, the mechanism for estrogen-mediated enhancement of BK signaling is not fully understood. The aim of the present study was to evaluate the relative contributions of estrogen receptor α (ERα), ERß, and G protein-coupled estrogen receptor 1 (GPER) to the enhanced signaling of the inflammatory mediator BK by 17ß-estradiol (17ß-E2) in primary sensory neurons from female rats in culture (ex vivo) and in behavioral assays of nociception in vivo. The effects of 17ß-E2 on BK responses were mimicked by ERα-selective agonists and blocked by ERα-selective antagonists and by small interfering RNA knockdown of ERα. The data indicate that ERα is required for 17ß-E2-mediated enhancement of BK signaling in peripheral sensory neurons in female rats.


Assuntos
Bradicinina/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Gânglio Trigeminal/efeitos dos fármacos , Animais , Comportamento Animal/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Hiperalgesia/metabolismo , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Fatores Sexuais , Gânglio Trigeminal/citologia , Gânglio Trigeminal/metabolismo
11.
Mol Pharmacol ; 81(2): 264-72, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22072818

RESUMO

The peripheral δ opioid receptor (DOR) is an attractive target for analgesic drug development. There is evidence that DOR can form heteromers with the κ-opioid receptor (KOR). As drug targets, heteromeric receptors offer an additional level of selectivity and, because of allosteric interactions between protomers, functionality. Here we report that selective KOR antagonists differentially altered the potency and/or efficacy of DOR agonists in primary cultures of adult rat peripheral sensory neurons and in a rat behavioral model of thermal allodynia. In vitro, the KOR antagonist nor-binaltorphimine (nor-BNI) enhanced the potency of [D-Pen(2,5)]-enkephalin (DPDPE), decreased the potency of [D-Ala(2),D-Leu(5)]-enkephalin (DADLE), and decreased the potency and efficacy of 4-[(R)-[(2S,5R)-4-allyl-2,5-dimethylpiperazin-1-yl](3-methoxyphenyl)methyl]-N,N-diethylbenzamide (SNC80) to inhibit prostaglandin E(2) (PGE(2))-stimulated adenylyl cyclase activity. In vivo, nor-BNI enhanced the effect of DPDPE and decreased the effect of SNC80 to inhibit PGE(2)-stimulated thermal allodynia. In contrast to nor-BNI, the KOR antagonist 5'-guanidinonaltrindole (5'-GNTI) reduced the response of DPDPE both in cultured neurons and in vivo. Evidence for DOR-KOR heteromers in peripheral sensory neurons included coimmunoprecipitation of DOR with KOR, a DOR-KOR heteromer selective antibody augmented the antinociceptive effect of DPDPE in vivo, and the DOR-KOR heteromer agonist 6'-GNTI inhibited adenylyl cyclase activity in vitro as well as PGE(2)-stimulated thermal allodynia in vivo. Taken together, these data suggest that DOR-KOR heteromers exist in rat primary sensory neurons and that KOR antagonists can act as modulators of DOR agonist responses most likely through allosteric interactions between the protomers of the DOR-KOR heteromer.


Assuntos
Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Células Receptoras Sensoriais/química , Regulação Alostérica , Animais , Células Cultivadas , Desenho de Fármacos , Hiperalgesia/etiologia , Ligantes , Multimerização Proteica , Ratos , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides kappa/agonistas
12.
Environ Technol ; 43(2): 225-236, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32543310

RESUMO

The capacity of three inocula (sewer biofilm, mangrove and estuary sediment) to utilise typical fermentation products of municipal solid waste for biological sulfate reduction was investigated. Each inoculum was used in two reactors, one fed a mixture of volatile fatty acids and another fed glucose to provide a suite of fermentation products via naturally occurring fermentation. Following 228 days of reactor operation, reactors inoculated with mangrove and estuary sediments exhibited higher sulfate reducing efficiencies (80-88%) compared to the biofilm-inoculated reactors (32-49%). Minimal use of acetate and its accumulation in the biofilm-inoculated reactors pointed to the high abundance of incomplete-oxidising sulfate reducing bacteria (SRB), Desulfovibrio and Desulfobulbus (90-96% of the sulfate reducing population). Although Desulfovibrio was also prominent in reactors inoculated with mangrove and estuary sediments, Desulfobacter, a known acetoclastic sulfate reducer, emerged from trace levels in these sediment (0.01% abundance in the estuary sediments and below detection in the mangrove sediments) to comprise 14%-70% of the sulfate reducing population at the end of reactor operation.


Assuntos
Glucose , Sulfatos , Acetatos , Ácidos Graxos Voláteis , Fermentação
13.
Neuropharmacology ; 220: 109251, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126728

RESUMO

Long-term inhibition of kappa opioid receptor (KOR) signaling in peripheral pain-sensing neurons is a potential obstacle for development of peripherally-restricted KOR agonists that produce analgesia. Such a long-term inhibitory mechanism is invoked from activation of c-Jun N-terminal kinase (JNK) that follows a single injection of the KOR antagonist norbinaltorphimine (norBNI). This effect requires protein synthesis of an unknown mediator in peripheral pain-sensing neurons. Using 2D difference gel electrophoresis with tandem mass spectrometry, we have identified that the scaffolding protein 14-3-3γ is upregulated in peripheral sensory neurons following activation of JNK with norBNI. Knockdown of 14-3-3γ by siRNA eliminates the long-term reduction in KOR-mediated cAMP signaling by norBNI in peripheral sensory neurons in culture. Similarly, knockdown of 14-3-3γ in the rat hind paw abolished the norBNI-mediated long-term reduction in peripheral KOR-mediated antinociception. Further, overexpression of 14-3-3γ in KOR expressing CHO cells prevented KOR-mediated inhibition of cAMP signaling. These long-term effects are selective for KOR as heterologous regulation of other receptor systems was not observed. These data suggest that 14-3-3γ is both necessary and sufficient for the long-term inhibition of KOR by norBNI in peripheral sensory neurons.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno , Receptores Opioides kappa , Proteínas 14-3-3 , Analgésicos , Animais , Cricetinae , Cricetulus , Naltrexona/análogos & derivados , Dor , RNA Interferente Pequeno , Ratos , Receptores Opioides kappa/metabolismo
14.
Neuropharmacology ; 216: 109187, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35835212

RESUMO

Pain and pain management in the elderly population is a significant social and medical problem. Pain sensation is a complex phenomenon that typically involves activation of peripheral pain-sensing neurons (nociceptors) which send signals to the spinal cord and brain that are interpreted as pain, an unpleasant sensory experience. In this work, young (4-5 months) and aged (26-27 months) Fischer 344 x Brown Norway (F344xBN) rats were examined for nociceptor sensitivity to activation by thermal (cold and heat) and mechanical stimulation following treatment with inflammatory mediators and activators of transient receptor potential (TRP) channels. Unlike other senses that decrease in sensitivity with age, sensitivity of hindpaw nociceptors to thermal and mechanical stimulation was not different between young and aged F344xBN rats. Intraplantar injection of bradykinin (BK) produced greater thermal and mechanical allodynia in aged versus young rats, whereas only mechanical allodynia was greater in aged rats following injection of prostaglandin E2 (PGE2). Intraplantar injection of TRP channel activators, capsaicin (TRPV1), mustard oil (TRPA1) and menthol (TRPM8) each resulted in greater mechanical allodynia in aged versus young rats and capsaicin-induced heat allodynia was also greater in aged rats. A treatment-induced allodynia that was greater in young rats was never observed. The anti-allodynic effects of intraplantar injection of kappa and delta opioid receptor agonists, salvinorin-A and D-Pen2,D-Pen5]enkephalin (DPDPE), respectively, were greater in aged than young rats, whereas mu opioid receptor agonists, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) and morphine, were not effective in aged rats. Consistent with these observations, in primary cultures of peripheral sensory neurons, inhibition of cAMP signaling in response to delta and kappa receptor agonists was greater in cultures derived from aged rats. By contrast, mu receptor agonists did not inhibit cAMP signaling in aged rats. Thus, age-related changes in nociceptors generally favor increased pain signaling in aged versus young rats, suggesting that changes in nociceptor sensitivity may play a role in the increased incidence of pain in the elderly population. These results also suggest that development of peripherally-restricted kappa or delta opioid receptor agonists may provide safer and effective pain relief for the elderly.


Assuntos
Hiperalgesia , Receptores Opioides delta , Idoso , Analgésicos Opioides/farmacologia , Animais , Capsaicina/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Encefalinas , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Nociceptores , Dor , Ratos , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Células Receptoras Sensoriais
15.
J Pharmacol Exp Ther ; 338(1): 92-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21487072

RESUMO

There is considerable interest in understanding the regulation of peripheral opioid receptors to avoid central nervous system side effects associated with systemically administered opioid analgesics. Here, we investigated the regulation of the κ-opioid receptor (KOR) on rat primary sensory neurons in vitro and in a rat model of thermal allodynia. Under basal conditions, application of the KOR agonist trans-(1S,2S)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide hydrochloride hydrate (U50488) did not inhibit adenylyl cyclase (AC) activity nor release of calcitonin gene-related peptide (CGRP) in vitro and did not inhibit thermal allodynia in vivo. However, after 15-min pretreatment with bradykinin (BK), U50488 became capable of inhibiting AC activity, CGRP release, and thermal allodynia. Inhibition of AC by 5-hydroxytryptamine 1 or neuropeptide Y(1) receptor agonists and stimulation of extracellular signal-regulated kinase activity by U50488 did not require BK pretreatment. The effect of U50488 in BK-primed tissue was blocked by the KOR antagonist nor-binaltorphimine both in vitro and in vivo. The effect of BK in vitro was blocked by either indomethacin or bisindolylmaleimide, suggesting that an arachidonic acid (AA) metabolite and protein kinase C (PKC) activation mediate BK-induced regulation of the KOR system. Furthermore, the effect of U50488 in BK-treated tissue was blocked by a soluble integrin-blocking peptide (GRGDSP), but not the inactive reverse sequence peptide (GDGRSP), suggesting that, in addition to AA and PKC, RGD-binding integrins participate in the regulation of KOR signaling in response to U50488. Understanding the mechanisms by which peripheral KOR agonist efficacy is regulated may lead to improved pharmacotherapy for the treatment of pain with reduced adverse effects.


Assuntos
Receptores Opioides kappa/fisiologia , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/fisiologia , Gânglio Trigeminal/fisiologia , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Receptores Opioides kappa/agonistas , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Gânglio Trigeminal/efeitos dos fármacos
16.
N Biotechnol ; 60: 52-61, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-32858258

RESUMO

Tuning of operational variables is a common practice to control the anaerobic digestion process and, in advanced applications, to promote the accumulation of fermentation products. However, process variables are interrelated. In this study, the hydraulic retention time (HRT) was decoupled from the organic loading rate (OLR) in order to isolate the effect of HRT as a selective pressure on: process performance, metabolic rates (hydrolytic, acetogenic, and methanogenic) and the microbial community. Four mesophilic anaerobic digesters were subjected to a sequential decrease in HRT from 15 to 8, 4 and 2 days while keeping the OLR constant at chemical oxygen demand of 1 gCOD L r-1 d-1. The results showed that HRT alone was insufficient to washout methanogens from the digesters, which in turn prevented the accumulation of volatile fatty acids (VFA). Methanosaeta was the dominant genus in the four digesters at all HRTs. Metabolic rates showed that process performance was controlled by hydrolysis, with a clear shift in acetogenic rates, from butyrate and propionate degradation to ethanol degradation at 4 and 2d HRT. The change in acetogenic pathways was attributed to a shift in the fermentation pathways co-current with changes in fermentative bacteria. At 2d HRT, biofilm was formed on the walls and paddles of the digesters, probably as a survival strategy. Most of the taxa in the biofilm were also present in the digester media. Overall, it is the combination of HRT with other operational parameters which promotes the washout of methanogens and the accumulation of VFA.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Methanosarcinaceae/metabolismo , Anaerobiose , Ácidos Graxos Voláteis/química , Fermentação , Microbiota , Fatores de Tempo
17.
Pharmacol Res Perspect ; 9(6): e00887, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34713624

RESUMO

Opioid overdose is a leading cause of death in the United States. The only treatment available currently is the competitive antagonist, naloxone (Narcan® ). Although naloxone is very effective and has saved many lives, as a competitive antagonist it has limitations. Due to the short half-life of naloxone, renarcotization can occur if the ingested opioid agonist remains in the body longer. Moreover, because antagonism by naloxone is surmountable, renarcotization can also occur in the presence of naloxone if a relatively larger dose of opioid agonist is taken. In such circumstances, a long-lasting, non-surmountable antagonist would offer an improvement in overdose treatment. Methocinnamox (MCAM) has been reported to have a long duration of antagonist action at mu opioid receptors in vivo. In HEK cells expressing the human mu opioid receptor, MCAM antagonism of mu agonist-inhibition of cAMP production was time-dependent, non-surmountable and non-reversible, consistent with (pseudo)-irreversible binding. In vivo, MCAM injected locally into the rat hindpaw antagonized mu agonist-mediated inhibition of thermal allodynia for up to 96 h. By contrast, antagonism by MCAM of delta or kappa agonists in HEK cells and in vivo was consistent with simple competitive antagonism. Surprisingly, MCAM also shifted the concentration-response curves of mu agonists in HEK cells in the absence of receptor reserve in a ligand-dependent manner. The shift in the [D-Ala2 ,N-MePhe4 ,Gly-ol5 ]-enkephalin (DAMGO) concentration-response curve by MCAM was insensitive to naloxone, suggesting that in addition to (pseudo)-irreversible orthosteric antagonism, MCAM acts allosterically to alter the affinity and/or intrinsic efficacy of mu agonists.


Assuntos
Cinamatos/farmacologia , Derivados da Morfina/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides mu/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Células HEK293 , Humanos , Ligantes , Masculino , Naloxona/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/metabolismo , Fatores de Tempo
18.
J Pharmacol Exp Ther ; 335(1): 190-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20647494

RESUMO

Many studies have demonstrated that premenopausal women are at increased risk for various pain disorders. Pain-sensing neurons, termed "nociceptors," in the trigeminal ganglia (TG) and dorsal root ganglia (DRG) express receptors for inflammatory mediators and noxious physical stimuli and transmit signals for central processing of pain sensation. Estrogen receptors (ERs) are also expressed on nociceptors in the TG and DRG, and there is ample literature to suggest that activation of ERs can influence pain mechanisms. However, the mechanism for ER modulation of nociceptor activity is incompletely understood. The aim of this study was to characterize the effect of 17ß-estradiol (17ß-E(2)) on signaling of the inflammatory mediator bradykinin (BK) in primary cultures of rat sensory neurons and a behavioral model of thermal allodynia in rats. Here, we show that exposure to 17ß-E(2) rapidly (within 15 min) enhanced responses to BK in vitro and in vivo. The 17ß-E(2)-mediated enhancement of BK signaling was not blocked by the transcription inhibitor anisomycin and was mediated by a membrane-associated ER. The effect of 17ß-E(2) to enhance BK responses required activation of ß1-containing, RGD-binding integrins. These data show that 17ß-E(2) rapidly enhances inflammatory mediator responses both in vitro and in vivo and suggest that 17ß-E(2) acting at primary sensory pain neurons may participate in regulating the sensitivity of women to painful stimuli.


Assuntos
Bradicinina/fisiologia , Estradiol/farmacologia , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Anisomicina/farmacologia , Comportamento Animal/efeitos dos fármacos , Células Cultivadas , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Fosfatos de Inositol/metabolismo , Integrinas/antagonistas & inibidores , Integrinas/metabolismo , Masculino , Terminações Nervosas/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Dor/psicologia , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Gânglio Trigeminal/citologia , Gânglio Trigeminal/efeitos dos fármacos , Fosfolipases Tipo C/metabolismo
19.
Waste Manag ; 114: 274-286, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32683243

RESUMO

The concept of biorefinery expands the possibilities to extract value from organic matter in form of either bespoke crops or organic waste. The viability of biorefinery schemes depends on the recovery of higher-value chemicals with potential for a wide distribution and an untapped marketability. The feasibility of biorefining organic waste is enhanced by the fact that the biorefinery will typically receive a waste management fee for accepting organic waste. The development and implementation of waste biorefinery concepts can open up a wide array of possibilities to shift waste management towards higher sustainability. However, barriers encompassing environmental, technical, economic, logistic, social and legislative aspects need to be overcome. For instance, waste biorefineries are likely to be complex systems due to the variability, heterogeneity and low purity of waste materials as opposed to dedicated biomasses. This article discusses the drivers that can make the biorefinery concept applicable to waste management and the possibilities for its development to full scale. Technological, strategic and market constraints affect the successful implementations of these systems. Fluctuations in waste characteristics, the level of contamination in the organic waste fraction, the proximity of the organic waste resource, the markets for the biorefinery products, the potential for integration with other industrial processes and disposal of final residues are all critical aspects requiring detailed analysis. Furthermore, interventions from policy makers are necessary to foster sustainable bio-based solutions for waste management.


Assuntos
Gerenciamento de Resíduos , Biocombustíveis , Biomassa , Indústrias
20.
Mol Pharmacol ; 75(6): 1380-91, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19279328

RESUMO

The serotonin (5-hydroxytryptamine; 5-HT) 2A receptor is a cell surface class A G protein-coupled receptor that regulates a multitude of physiological functions of the body and is a target for antipsychotic drugs. Here we found by means of fluorescence resonance energy transfer and immunoprecipitation studies that the 5-HT(2A)-receptor homodimerized in live cells, which we linked with its antagonist-dependent fingerprint in both binding and receptor signaling. Some antagonists, like the atypical antipsychotics clozapine and risperidone, differentiate themselves from others, like the typical antipsychotic haloperidol, antagonizing these 5-HT(2A) receptor-mediated functions in a pathway-specific manner, explained here by a new model of multiple active interconvertible conformations at dimeric receptors.


Assuntos
Antagonistas do Receptor 5-HT2 de Serotonina , Animais , Linhagem Celular , Cricetinae , Cricetulus , Transferência Ressonante de Energia de Fluorescência , Humanos , Imunoprecipitação , Modelos Biológicos , Conformação Proteica , Multimerização Proteica , Receptor 5-HT2A de Serotonina/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa