Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nucleic Acids Res ; 51(4): 1766-1782, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36762476

RESUMO

In Escherichia coli, replication of both strands of genomic DNA is carried out by a single replicase-DNA polymerase III holoenzyme (pol III HE). However, in certain genetic backgrounds, the low-fidelity TLS polymerase, DNA polymerase V (pol V) gains access to undamaged genomic DNA where it promotes elevated levels of spontaneous mutagenesis preferentially on the lagging strand. We employed active site mutants of pol III (pol IIIα_S759N) and pol V (pol V_Y11A) to analyze ribonucleotide incorporation and removal from the E. coli chromosome on a genome-wide scale under conditions of normal replication, as well as SOS induction. Using a variety of methods tuned to the specific properties of these polymerases (analysis of lacI mutational spectra, lacZ reversion assay, HydEn-seq, alkaline gel electrophoresis), we present evidence that repair of ribonucleotides from both DNA strands in E. coli is unequal. While RNase HII plays a primary role in leading-strand Ribonucleotide Excision Repair (RER), the lagging strand is subject to other repair systems (RNase HI and under conditions of SOS activation also Nucleotide Excision Repair). Importantly, we suggest that RNase HI activity can also influence the repair of single ribonucleotides incorporated by the replicase pol III HE into the lagging strand.


Assuntos
Reparo do DNA , Escherichia coli , DNA Polimerase III/genética , Replicação do DNA , Escherichia coli/genética , Ribonucleotídeos/metabolismo
2.
Nucleic Acids Res ; 50(15): 8749-8766, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35947649

RESUMO

The in vivo role for RNase H1 in mammalian mitochondria has been much debated. Loss of RNase H1 is embryonic lethal and to further study its role in mtDNA expression we characterized a conditional knockout of Rnaseh1 in mouse heart. We report that RNase H1 is essential for processing of RNA primers to allow site-specific initiation of mtDNA replication. Without RNase H1, the RNA:DNA hybrids at the replication origins are not processed and mtDNA replication is initiated at non-canonical sites and becomes impaired. Importantly, RNase H1 is also needed for replication completion and in its absence linear deleted mtDNA molecules extending between the two origins of mtDNA replication are formed accompanied by mtDNA depletion. The steady-state levels of mitochondrial transcripts follow the levels of mtDNA, and RNA processing is not altered in the absence of RNase H1. Finally, we report the first patient with a homozygous pathogenic mutation in the hybrid-binding domain of RNase H1 causing impaired mtDNA replication. In contrast to catalytically inactive variants of RNase H1, this mutant version has enhanced enzyme activity but shows impaired primer formation. This finding shows that the RNase H1 activity must be strictly controlled to allow proper regulation of mtDNA replication.


Assuntos
DNA Mitocondrial , Ribonuclease H , Camundongos , Animais , DNA Mitocondrial/química , Ribonuclease H/genética , Ribonuclease H/metabolismo , RNA/química , Replicação do DNA/genética , Mitocôndrias/genética , Mamíferos/genética
3.
Proc Natl Acad Sci U S A ; 117(25): 14306-14313, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513727

RESUMO

Ribonucleotides (rNMPs) incorporated in the nuclear genome are a well-established threat to genome stability and can result in DNA strand breaks when not removed in a timely manner. However, the presence of a certain level of rNMPs is tolerated in mitochondrial DNA (mtDNA) although aberrant mtDNA rNMP content has been identified in disease models. We investigated the effect of incorporated rNMPs on mtDNA stability over the mouse life span and found that the mtDNA rNMP content increased during early life. The rNMP content of mtDNA varied greatly across different tissues and was defined by the rNTP/dNTP ratio of the tissue. Accordingly, mtDNA rNMPs were nearly absent in SAMHD1-/- mice that have increased dNTP pools. The near absence of rNMPs did not, however, appreciably affect mtDNA copy number or the levels of mtDNA molecules with deletions or strand breaks in aged animals near the end of their life span. The physiological rNMP load therefore does not contribute to the progressive loss of mtDNA quality that occurs as mice age.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Instabilidade Genômica/fisiologia , Ribonucleotídeos/genética , Ribonucleotídeos/metabolismo , Animais , Dano ao DNA , Feminino , Dosagem de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotídeos , Proteína 1 com Domínio SAM e Domínio HD/genética
4.
PLoS Genet ; 15(1): e1007781, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605451

RESUMO

Human mitochondrial DNA (mtDNA) replication is first initiated at the origin of H-strand replication. The initiation depends on RNA primers generated by transcription from an upstream promoter (LSP). Here we reconstitute this process in vitro using purified transcription and replication factors. The majority of all transcription events from LSP are prematurely terminated after ~120 nucleotides, forming stable R-loops. These nascent R-loops cannot directly prime mtDNA synthesis, but must first be processed by RNase H1 to generate 3'-ends that can be used by DNA polymerase γ to initiate DNA synthesis. Our findings are consistent with recent studies of a knockout mouse model, which demonstrated that RNase H1 is required for R-loop processing and mtDNA maintenance in vivo. Both R-loop formation and DNA replication initiation are stimulated by the mitochondrial single-stranded DNA binding protein. In an RNase H1 deficient patient cell line, the precise initiation of mtDNA replication is lost and DNA synthesis is initiated from multiple sites throughout the mitochondrial control region. In combination with previously published in vivo data, the findings presented here suggest a model, in which R-loop processing by RNase H1 directs origin-specific initiation of DNA replication in human mitochondria.


Assuntos
Replicação do DNA/genética , DNA Mitocondrial/biossíntese , Mitocôndrias/genética , Ribonuclease H/genética , Animais , DNA Polimerase gama/genética , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Origem de Replicação/genética
5.
Mol Cell ; 50(3): 437-43, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23603118

RESUMO

To maintain genome stability, mismatch repair of nuclear DNA replication errors must be directed to the nascent strand, likely by DNA ends and PCNA. Here we show that the efficiency of mismatch repair in Saccharomyces cerevisiae is reduced by inactivating RNase H2, which nicks DNA containing ribonucleotides incorporated during replication. In strains encoding mutator polymerases, this reduction is preferential for repair of mismatches made by leading-strand DNA polymerase ε as compared to lagging-strand DNA polymerase δ. The results suggest that RNase-H2-dependent processing of ribonucleotides transiently present in DNA after replication may direct mismatch repair to the continuously replicated nascent leading strand.


Assuntos
Reparo de Erro de Pareamento de DNA , Replicação do DNA/genética , Ribonucleotídeos/genética , Ribonucleotídeos/metabolismo , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Instabilidade Genômica , Ribonuclease H/genética , Ribonuclease H/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nucleic Acids Res ; 47(5): 2425-2435, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30597049

RESUMO

DNA polymerase η (pol η) is best known for its ability to bypass UV-induced thymine-thymine (T-T) dimers and other bulky DNA lesions, but pol η also has other cellular roles. Here, we present evidence that pol η competes with DNA polymerases α and δ for the synthesis of the lagging strand genome-wide, where it also shows a preference for T-T in the DNA template. Moreover, we found that the C-terminus of pol η, which contains a PCNA-Interacting Protein motif is required for pol η to function in lagging strand synthesis. Finally, we provide evidence that a pol η dependent signature is also found to be lagging strand specific in patients with skin cancer. Taken together, these findings provide insight into the physiological role of DNA synthesis by pol η and have implications for our understanding of how our genome is replicated to avoid mutagenesis, genome instability and cancer.


Assuntos
Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Dímeros de Pirimidina/genética , Dano ao DNA/genética , DNA Polimerase I/genética , DNA Polimerase III/genética , Reparo do DNA/genética , Instabilidade Genômica/genética , Humanos , Mutagênese , Saccharomyces cerevisiae/genética
7.
PLoS Genet ; 14(12): e1007849, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30586386

RESUMO

Sequencing of whole cancer genomes has revealed an abundance of recurrent mutations in gene-regulatory promoter regions, in particular in melanoma where strong mutation hotspots are observed adjacent to ETS-family transcription factor (TF) binding sites. While sometimes interpreted as functional driver events, these mutations are commonly believed to be due to locally inhibited DNA repair. Here, we first show that low-dose UV light induces mutations preferably at a known ETS promoter hotspot in cultured cells even in the absence of global or transcription-coupled nucleotide excision repair (NER). Further, by genome-wide mapping of cyclobutane pyrimidine dimers (CPDs) shortly after UV exposure and thus before DNA repair, we find that ETS-related mutation hotspots exhibit strong increases in CPD formation efficacy in a manner consistent with tumor mutation data at the single-base level. Analysis of a large whole genome cohort illustrates the widespread contribution of this effect to recurrent mutations in melanoma. While inhibited NER underlies a general increase in somatic mutation burden in regulatory elements including ETS sites, our data supports that elevated DNA damage formation at specific genomic bases is at the core of the prominent promoter mutation hotspots seen in skin cancers, thus explaining a key phenomenon in whole-genome cancer analyses.


Assuntos
Melanoma/etiologia , Melanoma/genética , Mutação , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/genética , Dímeros de Pirimidina/biossíntese , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/genética , Raios Ultravioleta/efeitos adversos , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular Tumoral , Dano ao DNA , DNA de Neoplasias/genética , Humanos , Melanoma/metabolismo , Neoplasias Induzidas por Radiação/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-ets/metabolismo , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efeitos da radiação , Neoplasias Cutâneas/metabolismo , Sequenciamento Completo do Genoma
8.
PLoS Genet ; 13(2): e1006628, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28207748

RESUMO

Previous work has demonstrated the presence of ribonucleotides in human mitochondrial DNA (mtDNA) and in the present study we use a genome-wide approach to precisely map the location of these. We find that ribonucleotides are distributed evenly between the heavy- and light-strand of mtDNA. The relative levels of incorporated ribonucleotides reflect that DNA polymerase γ discriminates the four ribonucleotides differentially during DNA synthesis. The observed pattern is also dependent on the mitochondrial deoxyribonucleotide (dNTP) pools and disease-causing mutations that change these pools alter both the absolute and relative levels of incorporated ribonucleotides. Our analyses strongly suggest that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of a mitochondrial ribonucleotide excision repair pathway in human cells. Furthermore, we clearly demonstrate that when dNTP pools are limiting, ribonucleotides serve as a source of building blocks to maintain DNA replication. Increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools may contribute to a pathogenic mechanism that affects mtDNA stability and impair new rounds of mtDNA replication.


Assuntos
Reparo do DNA/genética , DNA Mitocondrial/genética , DNA Polimerase Dirigida por DNA/genética , Ribonucleotídeos/genética , DNA/biossíntese , DNA Polimerase gama , Replicação do DNA/genética , Fibroblastos , Genoma Mitocondrial , Células HeLa , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , RNA/biossíntese , Ribonucleases/genética
9.
Proc Natl Acad Sci U S A ; 114(47): 12466-12471, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109257

RESUMO

Incorporation of ribonucleotides into DNA during genome replication is a significant source of genomic instability. The frequency of ribonucleotides in DNA is determined by deoxyribonucleoside triphosphate/ribonucleoside triphosphate (dNTP/rNTP) ratios, by the ability of DNA polymerases to discriminate against ribonucleotides, and by the capacity of repair mechanisms to remove incorporated ribonucleotides. To simultaneously compare how the nuclear and mitochondrial genomes incorporate and remove ribonucleotides, we challenged these processes by changing the balance of cellular dNTPs. Using a collection of yeast strains with altered dNTP pools, we discovered an inverse relationship between the concentration of individual dNTPs and the amount of the corresponding ribonucleotides incorporated in mitochondrial DNA, while in nuclear DNA the ribonucleotide pattern was only altered in the absence of ribonucleotide excision repair. Our analysis uncovers major differences in ribonucleotide repair between the two genomes and provides concrete evidence that yeast mitochondria lack mechanisms for removal of ribonucleotides incorporated by the mtDNA polymerase. Furthermore, as cytosolic dNTP pool imbalances were transmitted equally well into the nucleus and the mitochondria, our results support a view of the cytosolic and mitochondrial dNTP pools in frequent exchange.


Assuntos
DNA Polimerase gama/fisiologia , Desoxirribonucleotídeos/fisiologia , Genoma Mitocondrial/fisiologia , Mitocôndrias/fisiologia , Saccharomyces cerevisiae/fisiologia , Núcleo Celular/fisiologia , Citoplasma/fisiologia , Reparo de Erro de Pareamento de DNA/fisiologia , Replicação do DNA/fisiologia , DNA Mitocondrial/metabolismo , Instabilidade Genômica
10.
Genome Res ; 24(11): 1751-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25217194

RESUMO

Mutational heterogeneity must be taken into account when reconstructing evolutionary histories, calibrating molecular clocks, and predicting links between genes and disease. Selective pressures and various DNA transactions have been invoked to explain the heterogeneous distribution of genetic variation between species, within populations, and in tissue-specific tumors. To examine relationships between such heterogeneity and variations in leading- and lagging-strand replication fidelity and mismatch repair, we accumulated 40,000 spontaneous mutations in eight diploid yeast strains in the absence of selective pressure. We found that replicase error rates vary by fork direction, coding state, nucleosome proximity, and sequence context. Further, error rates and DNA mismatch repair efficiency both vary by mismatch type, responsible polymerase, replication time, and replication origin proximity. Mutation patterns implicate replication infidelity as one driver of variation in somatic and germline evolution, suggest mechanisms of mutual modulation of genome stability and composition, and predict future observations in specific cancers.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA Polimerase III/genética , DNA Polimerase II/genética , DNA Polimerase I/genética , Genoma Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Algoritmos , DNA Polimerase I/metabolismo , DNA Polimerase II/metabolismo , DNA Polimerase III/metabolismo , Replicação do DNA , Evolução Molecular , Variação Genética , Modelos Genéticos , Taxa de Mutação , Nucleossomos/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa