Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Appl Biomech ; 35(2): 107-115, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30421635

RESUMO

People who develop low back pain during standing (standing-intolerant) are a subclinical group at risk for clinical low back pain. Standing-intolerant individuals respond favorably to stabilization exercise and may be similar to people with sacroiliac joint dysfunction that respond to stabilization approaches including sacroiliac joint (SIJ) bracing. The purpose was to characterize muscle activation and response to SIJ bracing in standing-tolerant and standing-intolerant individuals during forward flexion and unilateral stance. Trunk and hip electromyography data were collected from 31 participants (17 standing-tolerant and 14 standing-intolerant) while performing these tasks with and without SIJ bracing. Kinematics were captured concurrently and used for movement phase identification. Cross-correlation quantified trunk coactivation and extensor timing during return-to-stand from forward flexion; root mean square amplitude quantified gluteal activity during unilateral stance. The standing-intolerant group had elevated erector spinae-external oblique coactivation without bracing, and erector spinae-internal oblique coactivation with bracing during return-to-stand compared with standing-tolerant individuals. Both groups reversed extensor sequencing during return-to-stand with bracing. Standing-tolerant individuals had higher hip abductor activity in nondominant unilateral stance and increased hip extensor activity with bracing. SIJ bracing could be a useful adjunct to other interventions targeted toward facilitating appropriate muscle activation in standing-intolerant individuals.


Assuntos
Braquetes , Dor Lombar/fisiopatologia , Contração Muscular , Articulação Sacroilíaca/fisiologia , Posição Ortostática , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Quadril/fisiologia , Humanos , Região Lombossacral/fisiologia , Masculino , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular , Tronco/fisiologia , Adulto Jovem
2.
Langmuir ; 34(50): 15276-15282, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30458616

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) are often encapsulated into drug-carrying nano/microsized particles for simultaneous magnetic resonance (MR) imaging and treatment of diseased tissues. Unfortunately, encapsulated SPIONs may have a limited ability to modulate the T2-weighted relaxation of water protons, but this insight has not been examined systematically. This study demonstrates that SPIONs immobilized on 200 nm diameter poly(lactic- co-glycolic acid) (PLGA) nanoparticles using Pickering emulsification present 18-fold higher relaxivity than encapsulated SPIONs and 1.5-fold higher relaxivity than free SPIONs. In contrast, the SPIONs immobilized on 10 µm diameter PLGA particles exhibit a minor increase in MR relaxivity. This interesting finding will significantly impact current efforts to synthesize and assemble advanced MR contrast agents.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Tamanho da Partícula , Propriedades de Superfície
3.
Biomed Microdevices ; 18(3): 49, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27215416

RESUMO

Multifunctional particles with distinct physiochemical phases are required by a variety of applications in biomedical engineering, such as diagnostic imaging and targeted drug delivery. This motivates the development of a repeatable, efficient, and customizable approach to manufacturing particles with spatially segregated bioactive moieties. This study demonstrates a stereolithographic 3D printing approach for designing and fabricating large arrays of biphasic poly (ethylene glycol) diacrylate (PEGDA) gel particles. The fabrication parameters governing the physical and biochemical properties of multi-layered particles are thoroughly investigated, yielding a readily tunable approach to manufacturing customizable arrays of multifunctional particles. The advantage in spatially organizing functional epitopes is examined by loading superparamagnetic iron oxide nanoparticles (SPIONs) and bovine serum albumin (BSA) in separate layers of biphasic PEGDA gel particles and examining SPION-induced magnetic resonance (MR) contrast and BSA-release kinetics. Particles with spatial segregation of functional moieties have demonstrably higher MR contrast and BSA release. Overall, this study will contribute significant knowledge to the preparation of multifunctional particles for use as biomedical tools.


Assuntos
Hidrogéis/química , Tamanho da Partícula , Polietilenoglicóis/química , Impressão Tridimensional , Sistemas de Liberação de Medicamentos , Desenho de Equipamento , Microscopia Confocal , Nanopartículas/química , Soroalbumina Bovina
4.
Biomacromolecules ; 16(8): 2255-64, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26113238

RESUMO

Freeze-dried hydrogels are increasingly used to create 3D interconnected micropores that facilitate biomolecular and cellular transports. However, freeze-drying is often plagued by variance in micropore architecture based on polymer choice. We hypothesized that water-polymer binding affinity plays a significant role in sizes and numbers of micropores formed through freeze-drying, influencing cell-derived tissue quality. Poly(ethylene glycol)diacrylate (PEGDA) hydrogels with alginate methacrylate (AM) were used due to AM's higher binding affinity for water than PEGDA. PEGDA-AM hydrogels with larger AM concentrations resulted in larger sizes and numbers of micropores than pure PEGDA hydrogels, attributed to the increased mass of water binding to the PEGDA-AM gel. Skeletal myoblasts loaded in microporous PEGDA-AM hydrogels were active to produce 3D muscle-like tissue, while those loaded in pure PEGDA gels were localized on the gel surface. We propose that this study will be broadly useful in designing and improving the performance of various microporous gels.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Engenharia Tecidual , Ácido 3-Mercaptopropiônico/análogos & derivados , Ácido 3-Mercaptopropiônico/química , Alginatos/química , Técnicas de Cultura de Células , Liofilização , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Fibras Musculares Esqueléticas/química , Músculo Esquelético/química , Polietilenoglicóis/química , Poli-Hidroxietil Metacrilato , Água/química
5.
Chem Eng Sci ; 125: 20-24, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25838583

RESUMO

Nano- and microparticles loaded with various bioimaging contrast agents or therapeutic molecules have been increasingly used for the diagnosis and treatment of diseases and tissue defects. These particles, often a filled or hollow sphere, can extend the lifetime of encapsulated biomedical modalities in circulation and in target tissue. However, there is a great need to improve the drug loading and targeting efficiency of these particles. Recently, several simulation and in vitro experimental studies reported that particle shape plays a pivotal role in the targeted delivery of molecules. To better understand these findings and subsequently expedite the use of particles in biomedical applications, this review paper summarizes the methods to prepare non-spherical nano- and micro-scaled particles. In addition, this review covers studies reporting the effects of particle shape on the loading, delivery and release of encapsulated bioactive cargos. Finally, it discusses future directions to further improve the properties of non-spherical particles.

6.
ACS Appl Bio Mater ; 2(10): 4271-4282, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021442

RESUMO

Blood plasma-based products have been recently utilized in different tissue engineering applications, ranging from soft tissue repair to bone regeneration. Plasma contains fibrinogen which can be converted to an insoluble fibrin-laden gel in the presence of activated thrombin. In tissue engineering, these plasma-based materials can serve either as a three-dimensional scaffold to deliver therapeutic cells in vivo or as a growth factor-rich supply for tissue regeneration. Unfortunately, plasma-based materials are often mechanically weak and easily deformed, thus limiting their usability in harsh clinical settings. Simpler methods to create sturdier plasma-based materials are therefore needed. To this end, we hypothesized that combining alginate with plasma can create a composite plasma material with improved mechanical properties. Incorporating alginate into plasma produced composite gels with increasing bulk stiffness, as measured by rheology. Specifically, the plasma-alginate composite (PAC) gels with an alginate concentration of 2.86 mg/mL were 10-fold stiffer than pure plasma gels (11 vs 112 Pa). Interestingly, gel lysis rates were unchanged despite increasing alginate concentration (lysis time approximately 50 min). Adipose-derived stem cells cultured in the stiffer PAC gels expressed stemness markers (THY1, ENG, NT5E) at levels comparable to those in the pure plasma gels. Similarly, proangiogenic factor secretion was also constant across all gel conditions. In sum, we envision this PAC gel system will extend the use of plasma gel-based therapies into more rigorous clinical applications.

7.
Front Pharmacol ; 9: 672, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038569

RESUMO

Burns are caused by several mechanisms including flame, scald, chemical, electrical, and ionizing and non-ionizing radiation. Approximately half a million burn cases are registered annually, of which 40 thousand patients are hospitalized and receive definitive treatment. Burn care is very resource intensive as the treatment regimens and length of hospitalization are substantial. Burn wounds are classified based on depth as superficial (first degree), partial-thickness (second degree), or full-thickness (third degree), which determines the treatment necessary for successful healing. The goal of burn wound care is to fully restore the barrier function of the tissue as quickly as possible while minimizing infection, scarring, and contracture. The aim of this review is to highlight how tissue engineering and regenerative medicine strategies are being used to address the unique challenges of burn wound healing and define the current gaps in care for both partial- and full-thickness burn injuries. This review will present the current standard of care (SOC) and provide information on various treatment options that have been tested pre-clinically or are currently in clinical trials. Due to the complexity of burn wound healing compared to other skin injuries, burn specific treatment regimens must be developed. Recently, tissue engineering and regenerative medicine strategies have been developed to improve skin regeneration that can restore normal skin physiology and limit adverse outcomes, such as infection, delayed re-epithelialization, and scarring. Our emphasis will be centered on how current clinical and pre-clinical research of pharmacological agents, biomaterials, and cellular-based therapies can be applied throughout the continuum of burn care by targeting the stages of wound healing: hemostasis, inflammation, cell proliferation, and matrix remodeling.

9.
Nanoscale ; 9(16): 5194-5204, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28397883

RESUMO

Recently, polymeric micelles self-assembled from amphiphilic polymers have been studied for various industrial and biomedical applications. This nanoparticle self-assembly typically occurs in a solvent-exchange process. In this process, the quality of the resulting particles is uncontrollably mediated by polymeric solubility and mixing conditions. Here, we hypothesized that improving the solubility of an amphiphilic polymer in an organic solvent via chemical modification while controlling the mixing rate of organic and aqueous phases would enhance control over particle morphology and size. We examined this hypothesis by synthesizing a poly(2-hydroxyethyl)aspartamide (PHEA) grafted with controlled numbers of octadecyl (C18) chains and oligovaline groups (termed "oligovaline-PHEA-C18"). The mixing rate of DMF and water was controlled either by microfluidic mixing of laminar DMF and water flows or through turbulent bulk mixing. Interestingly, oligovaline-PHEA-C18 exhibited an increased solubility in DMF compared with PHEA-C18, as demonstrated by an increase of mixing energy. In addition, increasing the mixing rate between water and DMF using the microfluidic mixer resulted in a decrease of the diameter of the resulting polymeric micelles, as compared with the particles formed from a bulk mixing process. Overall, these findings will expand the parameter space available to control particle self-assembly while also serving to improve existing nanoparticle processing techniques.

10.
ACS Appl Mater Interfaces ; 9(2): 1219-1225, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27989109

RESUMO

Nanosized bioprobes that can highlight diseased tissue can be powerful diagnostic tools. However, a major unmet need is a tool with adequate adhesive properties and contrast-to-dose ratio. To this end, this study demonstrates that targeted superparamagnetic nanoprobes engineered to present a worm-like shape and hydrophilic packaging enhance both adhesion efficiency to target substrates and magnetic resonance (MR) sensitivity. These nanoprobes were prepared by the controlled self-assembly of superparamagnetic iron oxide nanoparticles (SPIONs) into worm-like superstructures using glycogen-like amphiphilic hyperbranched polyglycerols functionalized with peptides capable of binding to defective vasculature. The resulting worm-like SPION clusters presented binding affinity to the target substrate 10-fold higher than that of spherical ones and T2 molar MR relaxivity 3.5-fold higher than that of conventional, single SPIONs. The design principles discovered for these nanoprobes should be applicable to a range of other diseases where improved diagnostics are needed.


Assuntos
Nanopartículas de Magnetita , Meios de Contraste , Interações Hidrofóbicas e Hidrofílicas , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
11.
Macromol Biosci ; 17(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28683186

RESUMO

The progression of cancer is often accompanied by changes in the mechanical properties of an extracellular matrix. However, limited efforts have been made to reproduce these biological events in vitro. To this end, this study demonstrates that matrix remodeling caused by matrix metalloproteinase (MMP)-1 regulates phenotypic activities and modulates radiosensitivity of cancer cells exclusively in a 3D matrix. In this study, hepatocarcinoma cells are cultured in a collagen-based gel tailored to present an elastic modulus of ≈4.0 kPa. The subsequent exposure of the gel to MMP-1 decreases the elastic modulus from 4.0 to 0.5 kPa. In response to MMP-1, liver cancer cells undergo active proliferation, downregulation of E-cadherin, and the loss of detoxification capacity. The resulting spheroids are more sensitive to radiation than the spheroids cultured in the stiffer gel not exposed to MMP-1. Overall, this study serves to better understand and control the effects of MMP-induced matrix remodeling.


Assuntos
Carcinoma Hepatocelular/radioterapia , Matriz Extracelular/metabolismo , Neoplasias Hepáticas/radioterapia , Metaloproteinase 1 da Matriz/metabolismo , Tolerância a Radiação , Antígenos CD , Caderinas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/fisiopatologia , Proliferação de Células , Módulo de Elasticidade , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/fisiopatologia
12.
ACS Biomater Sci Eng ; 2(11): 1968-1975, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33440532

RESUMO

In the past several decades, significant efforts have been devoted to recapitulating the in vivo tissue microenvironment within an in vitro platform. However, it is still challenging to recreate de novo tissue with physiologically relevant matrix properties and fluid flow. To this end, this study demonstrates a method to independently tailor matrix stiffness and interstitial fluid flow using a cell-microenvironment-on-a-chip (C-MOC) platform. Collagen-polyethylene glycol gels tailored to present controlled stiffness and hydraulic conductivity were fabricated in a microfluidic chip. The chip was assembled to continuously create a steady flow of media through the gel. In the C-MOC platform, interstitial flow mitigated the effects of matrix softness on breast cancer cell behavior, according to an immunostaining-based analysis of estrogen receptor-α (ER-α), integrin ß1, and E-cadherin. This advanced cell culture platform serves to engineer tissue similar to in vitro tissue and contribute to better understanding and regulating of the biological roles of extracellular microenvironments.

13.
Nanoscale ; 7(15): 6737-44, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25804130

RESUMO

In recent years, surface modification of nanocarriers with targeting motifs has been explored to modulate delivery of various diagnostic, sensing and therapeutic molecular cargo to desired sites of interest in in vitro bioengineering platforms and in vivo pathologic tissue. However, most surface functionalization approaches are often plagued by complex chemical modifications and effortful purifications. To resolve such challenges, this study demonstrates a unique method to immobilize antibodies that can act as targeting motifs on the surfaces of nanocarriers, inspired by a process that bacteria use for immobilization of the host's antibodies. We hypothesized that alkylated Staphylococcus aureus protein A (SpA) would self-assemble with micelles and subsequently induce stable coupling of antibodies to the micelles. We examined this hypothesis by using poly(2-hydroxyethyl-co-octadecyl aspartamide) (PHEA-g-C18) as a model polymer to form micelles. The self-assembly between the micelles and alkylated SpA became more thermodynamically favorable by increasing the degree of substitution of octadecyl chains to PHEA-g-C18, due to a positive entropy change. Lastly, the mixing of SpA-PA-coupled micelles with antibodies resulted in the coating of micelles with antibodies, as confirmed with a fluorescence resonance energy transfer (FRET) assay. The micelles coated with antibodies to VCAM-1 or integrin αv displayed a higher binding affinity to substrates coated with VCAM-1 and integrin αvß3, respectively, than other controls, as evaluated with surface plasmon resonance (SPR) spectroscopy and a circulation-simulating flow chamber. We envisage that this bacteria-inspired protein immobilization approach will be useful to improve the quality of targeted delivery of nanoparticles, and can be extended to modify the surface of a wide array of nanocarriers.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Proteína Estafilocócica A/química , Motivos de Aminoácidos , Anticorpos/química , Biomimética , Fibroblastos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Integrina alfaVbeta3/química , Micelas , Ácido Palmítico/química , Polímeros/química , Staphylococcus aureus , Ressonância de Plasmônio de Superfície , Termodinâmica , Molécula 1 de Adesão de Célula Vascular/química
14.
Biomaterials ; 69: 184-90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26291408

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) are used as imaging probes to provide contrast in magnetic resonance images. Successful use of SPIONs in targeted applications greatly depends on their ability to generate contrast, even at low levels of accumulation, in the tissue of interest. In the present study, we report that SPION nanoclusters packaged to a controlled size by a hyperbranched polyglycerol (HPG) can target tissue defects and have a high relaxivity of 719 mM(-1) s(-1), which was close to their theoretical maximal limit. The resulting nanoclusters were able to identify regions of defective vasculature in an ischemic murine hindlimb using MRI with iron doses that were 5-10 fold lower than those typically used in preclinical studies. Such high relaxivity was attributed to the molecular architecture of HPG, which mimics that of the water retentive polysaccharide, glycogen. The results of this study will be broadly useful in sensitive imaging applications.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Glicerol/química , Membro Posterior/irrigação sanguínea , Isquemia/diagnóstico , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Polímeros/química , Animais , Linhagem Celular , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas de Magnetita/ultraestrutura , Masculino , Camundongos Endogâmicos BALB C
15.
ACS Appl Mater Interfaces ; 5(20): 10266-73, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24033276

RESUMO

This study presents a strategy to enhance the uptake of superparamagnetic iron oxide nanoparticle (SPIO) clusters by manipulating the cellular mechanical environment. Specifically, stem cells exposed to an orbital flow ingested almost a 2-fold greater amount of SPIO clusters than those cultured statically. Improvements in magnetic resonance (MR) contrast were subsequently achieved for labeled cells in collagen gels and a mouse model. Overall, this strategy will serve to improve the efficiency of cell tracking and therapies.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/citologia , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/síntese química , Ácido Aspártico/química , Células da Medula Óssea/citologia , Rastreamento de Células , Células Cultivadas , Endocitose , Imageamento por Ressonância Magnética , Mecanotransdução Celular , Células-Tronco Mesenquimais/química , Camundongos , Peptídeos/síntese química , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa