Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Proteome Res ; 19(9): 3652-3667, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32701294

RESUMO

Osteoarthritis is an age-related degenerative musculoskeletal disease characterized by loss of articular cartilage, synovitis, and subchondral bone sclerosis. Osteoarthritis pathogenesis is yet to be fully elucidated with no osteoarthritis-specific biomarkers in clinical use. Ex vivo equine cartilage explants (n = 5) were incubated in tumor necrosis factor-α (TNF-α)/interleukin-1ß (IL-1ß)-supplemented culture media for 8 days, with the media removed and replaced at 2, 5, and 8 days. Acetonitrile metabolite extractions of 8 day cartilage explants and media samples at all time points underwent one-dimensional (1D) 1H nuclear magnetic resonance metabolomic analysis, with media samples also undergoing mass spectrometry proteomic analysis. Within the cartilage, glucose and lysine were elevated following TNF-α/IL-1ß treatment, while adenosine, alanine, betaine, creatine, myo-inositol, and uridine decreased. Within the culture media, 4, 4, and 6 differentially abundant metabolites and 154, 138, and 72 differentially abundant proteins were identified at 1-2, 3-5, and 6-8 days, respectively, including reduced alanine and increased isoleucine, enolase 1, vimentin, and lamin A/C following treatment. Nine potential novel osteoarthritis neopeptides were elevated in the treated media. Implicated pathways were dominated by those involved in cellular movement. Our innovative study has provided insightful information on early osteoarthritis pathogenesis, enabling potential translation for clinical markers and possible new therapeutic targets.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cavalos , Interleucina-1beta , Metabolômica , Proteômica , Fator de Necrose Tumoral alfa
2.
J Proteome Res ; 19(7): 2585-2597, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32227958

RESUMO

Synovial fluid (SF) is of great interest for the investigation of orthopedic pathologies, as it is in close proximity to various tissues that are primarily altered during these disease processes and can be collected using minimally invasive protocols. Multi-"omic" approaches are commonplace, although little consideration is often given for multiple analysis techniques at sample collection. Nuclear magnetic resonance (NMR) metabolomics and liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics are two complementary techniques particularly suited to the study of SF. However, currently there are no agreed upon standard protocols that are published for SF collection and processing for use with NMR metabolomic analysis. Furthermore, the large protein concentration dynamic range present within SF can mask the detection of lower abundance proteins in proteomics. While combinational ligand libraries (ProteoMiner columns) have been developed to reduce this dynamic range, their reproducibility when used in conjunction with SF, or on-bead protein digestion protocols, has yet to be investigated. Here we employ optimized protocols for the collection, processing, and storage of SF for NMR metabolite analysis and LC-MS/MS proteome analysis, including a Lys-C endopeptidase digestion step prior to tryptic digestion, which increased the number of protein identifications and improved reproducibility for on-bead ProteoMiner digestion.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Espectroscopia de Ressonância Magnética , Metabolômica , Reprodutibilidade dos Testes , Líquido Sinovial
3.
Br Med Bull ; 135(1): 90-107, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32827252

RESUMO

INTRODUCTION: Tendon is a composite material with a well-ordered hierarchical structure exhibiting viscoelastic properties designed to transfer force. It is recognized that the incidence of tendon injury increases with age, suggesting a deterioration in homeostatic mechanisms or reparative processes. This review summarizes epigenetic mechanisms identified in ageing healthy tendon. SOURCES OF DATA: We searched multiple databases to produce a systematic review on the role of epigenetic mechanisms in tendon ageing. AREAS OF AGREEMENT: Epigenetic mechanisms are important in predisposing ageing tendon to injury. AREAS OF CONTROVERSY: The relative importance of epigenetic mechanisms are unknown in terms of promoting healthy ageing. It is also unknown whether these changes represent protective mechanisms to function or predispose to pathology. GROWING POINT: Epigenetic markers in ageing tendon, which are under-researched including genome-wide chromatin accessibility, should be investigated. AREAS TIMELY FOR DEVELOPING RESEARCH: Metanalysis through integration of multiple datasets and platforms will enable a holistic understanding of the epigenome in ageing and its relevance to disease.


Assuntos
Metilação de DNA , Epigênese Genética , Envelhecimento/genética , Epigenômica , Humanos , Tendões
4.
J Proteome Res ; 18(3): 1328-1339, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30667229

RESUMO

Ligaments are prone to injury and degeneration in humans and animals, however the healing potential of ligament is poor and current treatment options ineffective. Stem cell-based therapies hold potential for treatment of ligament injuries. This study aimed to characterize a ligament progenitor cell (LPC) population and to identify specific niche components which could promote the survival and function of LPCs. LPCs were isolated from canine cranial cruciate ligament and characterized for clonogenicity, multipotency and marker expression. The extracellular matrix (ECM) composition was characterized by the novel application of a metabolic labeling and mass spectrometry technique. LPCs demonstrated clonogenicity, multipotency, and stem cell marker expression. A number of different collagens, glycoproteins, and proteoglycans were identified in the LPC niche using proteomics. Metabolic labeling of cells demonstrated unique turnover profiles for distinct ECM protein groups, indicating the importance of certain niche components for LPC survival and function. The newly synthesized niche components identified in this study could be exploited to aid identification of LPCs and to promote their survival and function for potential ligament repair strategies.


Assuntos
Ligamento Cruzado Anterior/citologia , Proteínas da Matriz Extracelular/genética , Nicho de Células-Tronco/genética , Células-Tronco/citologia , Animais , Ligamento Cruzado Anterior/transplante , Linhagem da Célula/genética , Colágeno/genética , Colágeno/metabolismo , Ensaio de Unidades Formadoras de Colônias , Cães , Matriz Extracelular/genética , Proteínas da Matriz Extracelular/isolamento & purificação , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Fígado/metabolismo , Proteoglicanas/genética , Células-Tronco/metabolismo
5.
J Proteome Res ; 17(8): 2735-2743, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29969035

RESUMO

Osteoarthritis (OA), osteochondrosis (OC), and synovial sepsis in horses cause loss of function and pain. Reliable biomarkers are required to achieve accurate and rapid diagnosis, with synovial fluid (SF) holding a unique source of biochemical information. Nuclear magnetic resonance (NMR) spectroscopy allows global metabolite analysis of a small volume of SF, with minimal sample preprocessing using a noninvasive and nondestructive method. Equine SF metabolic profiles from both nonseptic joints (OA and OC) and septic joints were analyzed using 1D 1H NMR spectroscopy. Univariate and multivariate statistical analyses were used to identify differential metabolite abundance between groups. Metabolites were annotated via 1H NMR using 1D NMR identification software Chenomx, with identities confirmed using 1D 1H and 2D 1H 13C NMR. Multivariate analysis identified separation between septic and nonseptic groups. Acetate, alanine, citrate, creatine phosphate, creatinine, glucose, glutamate, glutamine, glycine, phenylalanine, pyruvate, and valine were higher in the nonseptic group, while glycylproline was higher in sepsis. Multivariate separation was primarily driven by glucose; however, partial-least-squares discriminant analysis plots with glucose excluded demonstrated the remaining metabolites were still able to discriminate the groups. This study demonstrates that a panel of synovial metabolites can distinguish between septic and nonseptic equine SF, with glucose the principal discriminator.


Assuntos
Artropatias/diagnóstico , Metabolômica/métodos , Sepse/diagnóstico , Líquido Sinovial/metabolismo , Animais , Glucose/análise , Cavalos , Artropatias/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Osteoartrite/diagnóstico , Osteoartrite/metabolismo , Osteocondrose/diagnóstico , Osteocondrose/metabolismo , Sepse/metabolismo
6.
BMC Biotechnol ; 18(1): 2, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338716

RESUMO

BACKGROUND: The concept of tissue engineering is to deliver to the injury site biological scaffolds carrying functional cells that will enhance healing response. The preferred cell source is autologous in order to reduce immune response in the treated individual. However, in elderly patients age-related changes in synthetic activity of the implanted cells and subsequent alterations in tissue protein content may affect therapeutic outcomes. In this study we investigated the effect of donor age on proteome composition of tenocyte-derived tendon tissue-engineered constructs. RESULTS: Liquid chromatography tandem mass spectrometry was used to assess the proteome of tissue-engineered constructs derived from young and old equine tenocytes. Ageing was associated with altered extracellular matrix composition, especially accumulation of collagens (type I, III and XIV), and lower cytoskeletal turnover. Proteins involved in cell responsiveness to mechanical stimuli and cell-extracellular matrix interaction (calponin 1, palladin, caldesmon 1, cortactin) were affected. CONCLUSIONS: This study demonstrated significant changes in proteome of engineered tendon derived from young and old tenocytes, indicating the impact of donor age on composition of autologous constructs.


Assuntos
Proteoma/metabolismo , Tendões/citologia , Tenócitos/fisiologia , Engenharia Tecidual/métodos , Fatores Etários , Animais , Células Cultivadas , Etanolamina/análise , Matriz Extracelular/fisiologia , Cavalos , Imuno-Histoquímica/métodos , Proteoma/análise , Proteômica/métodos , Tendões/fisiologia , Tenócitos/citologia
7.
Age Ageing ; 47(suppl_4): iv1-iv19, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30203052

RESUMO

The complexities and heterogeneity of the ageing process have slowed the development of consensus on appropriate biomarkers of healthy ageing. The Medical Research Council-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA) is a collaboration between researchers and clinicians at the Universities of Liverpool, Sheffield and Newcastle. One of CIMA's objectives is to 'Identify and share optimal techniques and approaches to monitor age-related changes in all musculoskeletal tissues, and to provide an integrated assessment of musculoskeletal function'-in other words to develop a toolkit for assessing musculoskeletal ageing. This toolkit is envisaged as an instrument that can be used to characterise and quantify musculoskeletal function during 'normal' ageing, lend itself to use in large-scale, internationally important cohorts, and provide a set of biomarker outcome measures for epidemiological and intervention studies designed to enhance healthy musculoskeletal ageing. Such potential biomarkers include: biochemical measurements in biofluids or tissue samples, in vivo measurements of body composition, imaging of structural and physical properties, and functional tests. This review assesses candidate biomarkers of musculoskeletal ageing under these four headings, details their biological bases, strengths and limitations, and makes practical recommendations for their use. In addition, we identify gaps in the evidence base and priorities for further research on biomarkers of musculoskeletal ageing.


Assuntos
Envelhecimento , Biomarcadores/metabolismo , Pesquisa Biomédica , Avaliação Geriátrica/métodos , Envelhecimento Saudável/metabolismo , Sistema Musculoesquelético , Idoso , Envelhecimento/patologia , Envelhecimento/fisiologia , Pesquisa Biomédica/métodos , Pesquisa Biomédica/organização & administração , Consenso , Europa (Continente) , Humanos , Colaboração Intersetorial , Sistema Musculoesquelético/metabolismo , Sistema Musculoesquelético/patologia , Sistema Musculoesquelético/fisiopatologia , Desempenho Físico Funcional , Pesquisa
8.
J Anat ; 229(3): 450-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27113131

RESUMO

Although the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the energetic cost of locomotion. To maximise energy storage and return, energy-storing tendons need to be more extensible and elastic than tendons with a purely positional function. These properties are conferred in part by a specialisation of a specific compartment of the tendon, the interfascicular matrix, which enables sliding and recoil between adjacent fascicles. However, the composition of the interfascicular matrix is poorly characterised and we therefore tested the hypothesis that the distribution of elastin and proteoglycans differs between energy-storing and positional tendons, and that protein distribution varies between the fascicular matrix and the interfascicular matrix, with localisation of elastin and lubricin to the interfascicular matrix. Protein distribution in the energy-storing equine superficial digital flexor tendon and positional common digital extensor tendon was assessed using histology and immunohistochemistry. The results support the hypothesis, demonstrating enrichment of lubricin in the interfascicular matrix in both tendon types, where it is likely to facilitate interfascicular sliding. Elastin was also localised to the interfascicular matrix, specifically in the energy-storing superficial digital flexor tendon, which may account for the greater elasticity of the interfascicular matrix in this tendon. A differential distribution of proteoglycans was identified between tendon types and regions, which may indicate a distinct role for each of these proteins in tendon. These data provide important advances into fully characterising structure-function relationships within tendon.


Assuntos
Tendões/metabolismo , Animais , Elastina , Glicoproteínas , Cavalos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica
9.
Adv Exp Med Biol ; 920: 247-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27535267

RESUMO

Tendon functional competence and structural integrity rely on homeostasis of tendon cell metabolism and extracellular matrix macromolecules. The clear link between tendinopathies and increasing age suggests a slow change to tendon homeostasis, which increases susceptibility to damage. Despite this well evidenced association between increasing age and tendon damage, changes to tendon mechanical properties with ageing are not clear with different studies reporting conflicting results. More recent research suggests that age-related changes occur at specific sub-structure locations and may be overlooked by measuring properties of the whole tendon. In this chapter we review changes to tendon mechanical properties, structure and composition. Mechanisms speculated to contribute to tendon change with age such as cellular senescence, ageing stem cell population, reactive oxygen species and formation of advanced glycation end-product crosslinks are discussed. Understanding age-related changes to tendon homeostasis are key to understanding increased incidence of tendon injuries in the ageing population.


Assuntos
Envelhecimento , Homeostase/fisiologia , Traumatismos dos Tendões/fisiopatologia , Tendões/fisiopatologia , Animais , Senescência Celular , Humanos
10.
J Biol Chem ; 289(37): 25867-78, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25077967

RESUMO

Energy storing tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), are highly prone to injury, the incidence of which increases with aging. The cellular and molecular mechanisms that result in increased injury in aged tendons are not well established but are thought to result in altered matrix turnover. However, little attempt has been made to fully characterize the tendon proteome nor determine how the abundance of specific tendon proteins changes with aging and/or injury. The aim of this study was, therefore, to assess the protein profile of normal SDFTs from young and old horses using label-free relative quantification to identify differentially abundant proteins and peptide fragments between age groups. The protein profile of injured SDFTs from young and old horses was also assessed. The results demonstrate distinct proteomic profiles in young and old tendon, with alterations in the levels of proteins involved in matrix organization and regulation of cell tension. Furthermore, we identified several new peptide fragments (neopeptides) present in aged tendons, suggesting that there are age-specific cleavage patterns within the SDFT. Proteomic profile also differed between young and old injured tendon, with a greater number of neopeptides identified in young injured tendon. This study has increased the knowledge of molecular events associated with tendon aging and injury, suggesting that maintenance and repair of tendon tissue may be reduced in aged individuals and may help to explain why the risk of injury increases with aging.


Assuntos
Envelhecimento/genética , Cavalos/genética , Proteômica , Traumatismos dos Tendões/genética , Fatores Etários , Envelhecimento/patologia , Animais , Eletroforese em Gel de Poliacrilamida , Matriz Extracelular/metabolismo , Cavalos/fisiologia , Humanos , Traumatismos dos Tendões/patologia , Tendões/metabolismo , Tendões/patologia
11.
Int Wound J ; 12(1): 89-99, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23590276

RESUMO

This study outlines the potential of a novel therapeutic dressing for the management of chronic wounds. The dressing incorporates polyphosphate, a non toxic compound with a number of beneficial characteristics in terms of wound healing, in a foam matrix. The aim of this study was to identify the potential of polyphosphate incorporated in the foam dressing to sequester the activity of matrix metalloproteinases (MMPs) and proteases derived from Pseudomonas aeruginosa. Methods used included gelatin zymography and milk-casein agar plate analysis. Results have shown that this dressing is effectively capable of reducing the levels of MMP-2 and MMP-9 in both their active and latent forms using an in vitro model. The dressing also demonstrated the compound's potential in the regulation of P. aeruginosa derived proteases.


Assuntos
Bandagens , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Polifosfatos , Cicatrização/fisiologia , Ferimentos e Lesões/enzimologia , Animais , Derme/efeitos dos fármacos , Derme/enzimologia , Derme/patologia , Cavalos , Pseudomonas aeruginosa/fisiologia , Técnicas de Cultura de Tecidos , Ferimentos e Lesões/microbiologia , Ferimentos e Lesões/patologia
12.
Aging Dis ; 15(1): 295-310, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307816

RESUMO

Energy storing tendons such as the human Achilles and equine superficial digital flexor tendon (SDFT) are prone to injury, with incidence increasing with aging, peaking in the 5th decade of life in the human Achilles tendon. The interfascicular matrix (IFM), which binds tendon fascicles, plays a key role in energy storing tendon mechanics, and aging alterations to the IFM negatively impact tendon function. While the mechanical role of the IFM in tendon function is well-established, the biological role of IFM-resident cell populations remains to be elucidated. Therefore, the aim of this study was to identify IFM-resident cell populations and establish how these populations are affected by aging. Cells from young and old SDFTs were subjected to single cell RNA-sequencing, and immunolabelling for markers of each resulting population used to localise cell clusters. Eleven cell clusters were identified, including tenocytes, endothelial cells, mural cells, and immune cells. One tenocyte cluster localised to the fascicular matrix, whereas nine clusters localised to the IFM. Interfascicular tenocytes and mural cells were preferentially affected by aging, with differential expression of genes related to senescence, dysregulated proteostasis and inflammation. This is the first study to establish heterogeneity in IFM cell populations, and to identify age-related alterations specific to IFM-localised cells.


Assuntos
Tendão do Calcâneo , Células Endoteliais , Humanos , Cavalos , Animais , Envelhecimento/metabolismo
13.
Int J Exp Pathol ; 94(4): 248-59, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23718692

RESUMO

Tendon consists of highly ordered type I collagen molecules that are grouped together to form subunits of increasing diameter. At each hierarchical level, the type I collagen is interspersed with a predominantly non-collagenous matrix (NCM) (Connect. Tissue Res., 6, 1978, 11). Whilst many studies have investigated the structure, organization and function of the collagenous matrix within tendon, relatively few have studied the non-collagenous components. However, there is a growing body of research suggesting the NCM plays an important role within tendon; adaptations to this matrix may confer the specific properties required by tendons with different functions. Furthermore, age-related alterations to non-collagenous proteins have been identified, which may affect tendon resistance to injury. This review focuses on the NCM within the tensional region of developing and mature tendon, discussing the current knowledge and identifying areas that require further study to fully understand structure-function relationships within tendon. This information will aid in the development of appropriate techniques for tendon injury prevention and treatment.


Assuntos
Matriz Extracelular/metabolismo , Tendões/metabolismo , Animais , Colágeno Tipo I/metabolismo , Humanos , Proteoglicanas/metabolismo
14.
Int J Mol Sci ; 14(10): 20658-81, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24132152

RESUMO

Osteoarthritis (OA) is characterized by a loss of extracellular matrix which is driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome enables the global study of secreted proteins. These are an important class of molecules with roles in numerous pathological mechanisms. Although cartilage studies have identified profiles of secreted proteins, quantitative proteomics techniques have been implemented that would enable further biological questions to be addressed. To overcome this limitation, we used the secretome from human OA cartilage explants stimulated with IL-1ß and compared proteins released into the media using a label-free LC-MS/MS-based strategy. We employed QconCAT technology to quantify specific proteins using selected reaction monitoring. A total of 252 proteins were identified, nine were differentially expressed by IL-1 ß stimulation. Selected protein candidates were quantified in absolute amounts using QconCAT. These findings confirmed a significant reduction in TIMP-1 in the secretome following IL-1ß stimulation. Label-free and QconCAT analysis produced equivocal results indicating no effect of cytokine stimulation on aggrecan, cartilage oligomeric matrix protein, fibromodulin, matrix metalloproteinases 1 and 3 or plasminogen release. This study enabled comparative protein profiling and absolute quantification of proteins involved in molecular pathways pertinent to understanding the pathogenesis of OA.


Assuntos
Osteoartrite/genética , Osteoartrite/metabolismo , Proteoma/genética , Proteoma/metabolismo , Cartilagem/metabolismo , Humanos , Proteômica/métodos
15.
Biomedicines ; 11(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37189806

RESUMO

Osteoarthritis is the most common degenerative joint disorder. MicroRNAs are gene expression regulators that act post-transcriptionally to control tissue homeostasis. Microarray analysis was undertaken in osteoarthritic intact, lesioned and young intact cartilage. Principal component analysis showed that young intact cartilage samples were clustered together; osteoarthritic samples had a wider distribution; and osteoarthritic intact samples were separated into two subgroups, osteoarthritic-Intact-1 and osteoarthritic-Intact-2. We identified 318 differentially expressed microRNAs between young intact and osteoarthritic lesioned cartilage, 477 between young intact and osteoarthritic-Intact-1 cartilage and 332 between young intact and osteoarthritic-Intact-2 cartilage samples. For a selected list of differentially expressed microRNAs, results were verified in additional cartilage samples using qPCR. Of the validated DE microRNAs, four-miR-107, miR-143-3p, miR-361-5p and miR-379-5p-were selected for further experiments in human primary chondrocytes treated with IL-1ß. Expression of these microRNAs decreased in human primary chondrocytes treated with IL-1ß. For miR-107 and miR-143-3p, gain- and loss-of-function approaches were undertaken and associated target genes and molecular pathways were investigated using qPCR and mass spectrometry proteomics. Analyses showed that WNT4 and IHH, predicted targets of miR-107, had increased expression in osteoarthritic cartilage compared to young intact cartilage and in primary chondrocytes treated with miR-107 inhibitor, and decreased expression in primary chondrocytes treated with miR-107 mimic, suggesting a role of miR-107 in chondrocyte survival and proliferation. In addition, we identified an association between miR-143-3p and EIF2 signalling and cell survival. Our work supports the role of miR-107 and miR-143-3p in important chondrocyte mechanisms regulating proliferation, hypertrophy and protein translation.

16.
Wound Repair Regen ; 20(2): 125-36, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22380687

RESUMO

Cutaneous wound healing is orchestrated by a number of physiological pathways that ultimately lead to reformation of skin integrity and the production of functional scar tissue. The remodeling of a wound is significantly affected by matrix metalloproteinases (MMPs), which act to control the degradation of the extracellular matrix (ECM). Regulation of MMPs is imperative for wound healing as excessive levels of MMPs can lead to disproportionate destruction of the wound ECM compared to ECM deposition. In addition to human MMPs, bacterial proteases have been found to be influential in tissue breakdown and, as such, have a role to play in the healing of infected wounds. For example, the zinc-metalloproteinase, elastase, produced by Pseudomonas aeruginosa, induces degradation of fibroblast proteins and proteoglycans in chronic wounds and has also been shown to degrade host immune cell mediators. Microbial extracellular enzymes have also been shown to degrade human wound fluid and inhibit fibroblast cell growth. It is now being acknowledged that host and bacterial MMPs may act synergistically to cause tissue breakdown within the wound bed. Several studies have suggested that bacterial-derived secreted proteases may act to up-regulate the levels of MMPs produced by the host cells. Together, these findings indicate that bacterial phenotype in terms of protease producing potential of bacteria should be taken into consideration during diagnostic and clinical intervention of infected wound management. Furthermore, both host MMPs and those derived from infecting bacteria need to be targeted in order to increase the healing capacity of the injured tissue. The aim of this review is to investigate the evidence suggestive of a relationship between unregulated levels of both host and bacterial proteases and delayed wound healing.


Assuntos
Pé Diabético/enzimologia , Elastase de Leucócito/metabolismo , Metaloproteinases da Matriz/metabolismo , Úlcera por Pressão/enzimologia , Úlcera Varicosa/enzimologia , Cicatrização , Biofilmes , Cicatriz/enzimologia , Matriz Extracelular/enzimologia , Exsudatos e Transudatos/enzimologia , Humanos , Regulação para Cima
17.
Equine Vet J ; 54(2): 390-414, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33566383

RESUMO

BACKGROUND: Surveillance of antimicrobial resistance (AMR) in horses is important to aid empirical treatment decisions and highlight emerging AMR threats. OBJECTIVE: To describe the AMR patterns of common groups of bacteria from clinical submissions from horses in the UK during 2018, and to determine how this varies by sample site and type of submitting veterinary practice. STUDY DESIGN: Prospective observational study. METHODS: All data on bacterial culture and subsequent antimicrobial susceptibility testing (AST) collected in 2018 from six large equine diagnostic laboratories were included. Resistance patterns were analysed including resistance to 1 or 2 antimicrobial classes, multidrug resistance (MDR), extensively drug resistant (XDR), resistance to highest priority critically important antimicrobials and isolates where there was no readily available treatment for adult horses in the UK. Submitting practices were classified according to whether they treated referral cases or not (first opinion). Comparisons between proportions and resistance for each bacterial group and sample site was performed using Chi-squared (or Fisher's exact test). RESULTS: A total of 6,018 bacterial isolates from 4,038 diagnostic submissions were included from respiratory (n = 1555), urogenital (n = 1,010), skin/hair/wound/abscess (n = 753), surgical site infection (SSI) /catheter-related-infection (CRI) /orthopaedic infections (n = 347) and unknown/'other' submissions (n = 373). There were 2,711 Gram-negative isolates and 3,307 Gram-positive isolates. Prevalence of MDR for E. coli was 31.7%, Staphylococcus spp. 25.3% and > 25% for the majority of bacterial isolates from SSI/CRI/orthopaedic submissions. For Enterococcus spp. there was no readily available treatment for adult horses in the UK in 30.2% of positive submissions. MDR was significantly higher from referral hospital than first opinion submissions for the majority of pathogens (except Actinobacillus spp. and Pasteurella spp. and ß-haemolytic Streptococcus spp.). MAIN LIMITATIONS: Since culture and susceptibility results are not systematic analyses based on harmonised methods, selection bias could impact the findings. CONCLUSIONS: Ongoing surveillance is essential to understand emerging patterns of resistance. MDR is high in SSI/CRI/orthopaedic infections, which is important for hospital biosecurity and guiding treatment decisions. Harmonisation of diagnostic procedures and interpretation of results amongst veterinary laboratories will improve AMR surveillance and data comparison among laboratories.


Assuntos
Antibacterianos , Doenças dos Cavalos , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Doenças dos Cavalos/tratamento farmacológico , Doenças dos Cavalos/epidemiologia , Cavalos , Testes de Sensibilidade Microbiana/veterinária , Infecção da Ferida Cirúrgica/veterinária , Reino Unido/epidemiologia
18.
J Orthop Res ; 40(3): 595-603, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33993513

RESUMO

Osteoarthritis (OA) is a disease of the entire joint but the relationship between pathological events in various joint tissues is poorly understood. We examined concurrent changes in bone, cartilage, and synovium in a naturally occurring equine model of joint degeneration. Joints (n = 64) were grossly assessed for palmar/plantar osteochondral disease (POD) in racehorses that required euthanasia for unrelated reasons and assigned a grade of 0 (n = 34), 1 (n = 17), 2 or 3 (n = 13) using a recognized grading scheme. Synovium, cartilage, and subchondral bone were collected for histological and gene expression analysis. Relations between POD grade, cartilage histological score, and gene expression levels were examined using one-way analysis of variance or Kruskal-Wallis test and Spearman's correlation coefficient with corrections for multiple comparisons. Cartilage histological score increased in joints with POD grade 1 (p = 0.002) and 2 or 3 (p < 0.001) compared to 0. At grade 1, expression of COL1A1, COL2A1, and MMP1 increased and BGN decreased in subchondral bone while expression of BGN and ACAN decreased in cartilage. These changes further progressed at grades 2 and 3. POD grades 2 and 3 were associated with decreased expression of osteoclast inhibitor OPG and increased markers of cartilage degeneration (MMP13, COL1A1). Expression of the vascular endothelial growth factor decreased with POD grade and negatively correlated with cartilage histological score. Synovium showed no histological or transcriptomic changes related to pathology grade. Cartilage degeneration in POD is likely to be secondary to remodeling of the subchondral bone. Limited activation of proinflammatory and catabolic genes and moderate synovial pathology suggests distinct molecular phenotype of POD compared with OA.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Osteoartrite , Osteocondrite Dissecante , Animais , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Doenças das Cartilagens/patologia , Cartilagem Articular/patologia , Perfilação da Expressão Gênica , Cavalos , Osteoartrite/genética , Osteoartrite/metabolismo , Osteocondrite Dissecante/genética , Osteocondrite Dissecante/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Dis Model Mech ; 15(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36106514

RESUMO

The osteogenesis imperfecta murine (oim) model with solely homotrimeric (α1)3 type I collagen, owing to a dysfunctional α2(I) collagen chain, has a brittle bone phenotype, implying that the (α1)2(α2)1 heterotrimer is required for physiological bone function. Here, we comprehensively show, for the first time, that mice lacking the α2(I) chain do not have impaired bone biomechanical or structural properties, unlike oim homozygous mice. However, Mendelian inheritance was affected in male mice of both lines, and male mice null for the α2(I) chain exhibited age-related loss of condition. Compound heterozygotes were generated to test whether gene dosage was responsible for the less-severe phenotype of oim heterozygotes, after allelic discrimination showed that the oim mutant allele was not downregulated in heterozygotes. Compound heterozygotes had impaired bone structural properties compared to those of oim heterozygotes, albeit to a lesser extent than those of oim homozygotes. Hence, the presence of heterotrimeric type I collagen in oim heterozygotes alleviates the effect of the oim mutant allele, but a genetic interaction between homotrimeric type I collagen and the oim mutant allele leads to bone fragility.


Assuntos
Osteogênese Imperfeita , Animais , Colágeno/genética , Colágeno Tipo I/genética , Modelos Animais de Doenças , Homozigoto , Masculino , Camundongos , Camundongos Mutantes , Osteogênese Imperfeita/genética
20.
J Biol Chem ; 285(21): 15674-81, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20308077

RESUMO

Little is known about the rate at which protein turnover occurs in living tendon and whether the rate differs between tendons with different physiological roles. In this study, we have quantified the racemization of aspartic acid to calculate the age of the collagenous and non-collagenous components of the high strain injury-prone superficial digital flexor tendon (SDFT) and low strain rarely injured common digital extensor tendon (CDET) in a group of horses with a wide age range. In addition, the turnover of collagen was assessed indirectly by measuring the levels of collagen degradation markers (collagenase-generated neoepitope and cross-linked telopeptide of type I collagen). The fractional increase in D-Asp was similar (p = 0.7) in the SDFT (5.87 x 10(-4)/year) and CDET (5.82 x 10(-4)/year) tissue, and D/L-Asp ratios showed a good correlation with pentosidine levels. We calculated a mean (+/-S.E.) collagen half-life of 197.53 (+/-18.23) years for the SDFT, which increased significantly with horse age (p = 0.03) and was significantly (p < 0.001) higher than that for the CDET (34.03 (+/-3.39) years). Using similar calculations, the half-life of non-collagenous protein was 2.18 (+/-0.41) years in the SDFT and was significantly (p = 0.04) lower than the value of 3.51 (+/-0.51) years for the CDET. Collagen degradation markers were higher in the CDET and suggested an accumulation of partially degraded collagen within the matrix with aging in the SDFT. We propose that increased susceptibility to injury in older individuals results from an inability to remove partially degraded collagen from the matrix leading to reduced mechanical competence.


Assuntos
Envelhecimento/metabolismo , Ácido Aspártico/metabolismo , Colágeno Tipo I/metabolismo , Traumatismos dos Tendões/metabolismo , Tendões/metabolismo , Envelhecimento/patologia , Animais , Biomarcadores/metabolismo , Feminino , Cavalos , Masculino , Traumatismos dos Tendões/patologia , Tendões/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa