Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Neurophysiol ; 131(3): 492-508, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38264784

RESUMO

Spike timing-based representations of sensory information depend on embedded dynamical frameworks within neuronal networks that establish the rules of local computation and interareal communication. Here, we investigated the dynamical properties of olfactory bulb circuitry in mice of both sexes using microelectrode array recordings from slice and in vivo preparations. Neurochemical activation or optogenetic stimulation of sensory afferents evoked persistent gamma oscillations in the local field potential. These oscillations arose from slower, GABA(A) receptor-independent intracolumnar oscillators coupled by GABA(A)-ergic synapses into a faster, broadly coherent network oscillation. Consistent with the theoretical properties of coupled-oscillator networks, the spatial extent of zero-phase coherence was bounded in slices by the reduced density of lateral interactions. The intact in vivo network, however, exhibited long-range lateral interactions that suffice in simulation to enable zero-phase gamma coherence across the olfactory bulb. The timing of action potentials in a subset of principal neurons was phase-constrained with respect to evoked gamma oscillations. Coupled-oscillator dynamics in olfactory bulb thereby enable a common clock, robust to biological heterogeneities, that is capable of supporting gamma-band spike synchronization and phase coding across the ensemble of activated principal neurons.NEW & NOTEWORTHY Odor stimulation evokes rhythmic gamma oscillations in the field potential of the olfactory bulb, but the dynamical mechanisms governing these oscillations have remained unclear. Establishing these mechanisms is important as they determine the biophysical capacities of the bulbar circuit to, for example, maintain zero-phase coherence across a spatially extended network, or coordinate the timing of action potentials in principal neurons. These properties in turn constrain and suggest hypotheses of sensory coding.


Assuntos
Neurônios , Bulbo Olfatório , Feminino , Masculino , Camundongos , Animais , Bulbo Olfatório/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Odorantes
2.
PLoS Comput Biol ; 17(6): e1009054, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34115747

RESUMO

We present a general physicochemical sampling model for olfaction, based on established pharmacological laws, in which arbitrary combinations of odorant ligands and receptors can be generated and their individual and collective effects on odor representations and olfactory performance measured. Individual odor ligands exhibit receptor-specific affinities and efficacies; that is, they may bind strongly or weakly to a given receptor, and can act as strong agonists, weak agonists, partial agonists, or antagonists. Ligands interacting with common receptors compete with one another for dwell time; these competitive interactions appropriately simulate the degeneracy that fundamentally defines the capacities and limitations of odorant sampling. The outcome of these competing ligand-receptor interactions yields a pattern of receptor activation levels, thereafter mapped to glomerular presynaptic activation levels based on the convergence of sensory neuron axons. The metric of greatest interest is the mean discrimination sensitivity, a measure of how effectively the olfactory system at this level is able to recognize a small change in the physicochemical quality of a stimulus. This model presents several significant outcomes, both expected and surprising. First, adding additional receptors reliably improves the system's discrimination sensitivity. Second, in contrast, adding additional ligands to an odorscene initially can improve discrimination sensitivity, but eventually will reduce it as the number of ligands increases. Third, the presence of antagonistic ligand-receptor interactions produced clear benefits for sensory system performance, generating higher absolute discrimination sensitivities and increasing the numbers of competing ligands that could be present before discrimination sensitivity began to be impaired. Finally, the model correctly reflects and explains the modest reduction in odor discrimination sensitivity exhibited by transgenic mice in which the specificity of glomerular targeting by primary olfactory neurons is partially disrupted.


Assuntos
Modelos Químicos , Odorantes/análise , Animais , Camundongos , Camundongos Transgênicos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores Odorantes/metabolismo
3.
Learn Mem ; 25(5): 198-205, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29661832

RESUMO

Long-term fear memory formation in the hippocampus and neocortex depends upon brain-derived neurotrophic factor (BDNF) signaling after acquisition. Incremental, appetitive odor discrimination learning is thought to depend substantially on the differentiation of adult-born neurons within the olfactory bulb (OB)-a process that is closely associated with BDNF signaling. We sought to elucidate the role of neurotrophin signaling within the OB on odor memory consolidation. Male mice were trained on odor-reward associative discriminations after bilateral infusion of the kinase inhibitor K252a, or vehicle control, into the OB. K252a is a partially selective inhibitor of tyrosine kinase (Trk) receptors, including the TrkB receptor for BDNF, though it also inhibits other plasticity-related kinases such as PKC and CaMKII/IV. K252a infusion into the OB did not impair odor acquisition or short-term (2 h) memory for the learned discriminations, but significantly impaired long-term (48 h) odor memory (LTM). This LTM deficit also was associated with reduced selectivity for the conditioned odorant in a reward-seeking digging task. Infusions of K252a immediately prior to testing did not impair LTM recall. These results indicate that kinase activation in the OB is required for the consolidation of odor memory of incrementally acquired information.


Assuntos
Consolidação da Memória/fisiologia , Memória de Longo Prazo/fisiologia , Bulbo Olfatório/enzimologia , Receptores Proteína Tirosina Quinases/fisiologia , Olfato/fisiologia , Animais , Carbazóis/administração & dosagem , Discriminação Psicológica , Inibidores Enzimáticos/administração & dosagem , Alcaloides Indólicos/administração & dosagem , Masculino , Consolidação da Memória/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Camundongos , Odorantes , Percepção Olfatória/fisiologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores
4.
J Neuroinflammation ; 15(1): 57, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29471842

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with cognitive decline and complete loss of basic functions. The ubiquitous apicomplexan parasite Toxoplasma gondii (T. gondii) infects up to one third of the world's population and is implicated in AD. METHODS: We infected C57BL/6 wild-type male and female mice with 10 T. gondii ME49 cysts and assessed whether infection led to behavioral and anatomical effects using immunohistochemistry, immunofluorescence, Western blotting, cell culture assays, as well as an array of mouse behavior tests. RESULTS: We show that T. gondii infection induced two major hallmarks of AD in the brains of C57BL/6 male and female mice: beta-amyloid (Aß) immunoreactivity and hyperphosphorylated Tau. Infected mice showed significant neuronal death, loss of N-methyl-D-aspartate receptor (NMDAR) expression, and loss of olfactory sensory neurons. T. gondii infection also caused anxiety-like behavior, altered recognition of social novelty, altered spatial memory, and reduced olfactory sensitivity. This last finding was exclusive to male mice, as infected females showed intact olfactory sensitivity. CONCLUSIONS: These results demonstrate that T. gondii can induce advanced signs of AD in wild-type mice and that it may induce AD in some individuals with underlying health problems.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/parasitologia , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/fisiologia , Toxoplasma , Toxoplasmose/metabolismo , Doença de Alzheimer/etiologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Toxoplasmose/complicações
5.
PLoS Comput Biol ; 13(11): e1005760, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29140973

RESUMO

The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING), best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity.


Assuntos
Ritmo Gama/fisiologia , Modelos Neurológicos , Bulbo Olfatório/fisiologia , Potenciais de Ação , Animais , Biologia Computacional , Ratos
6.
J Neurophysiol ; 115(6): 2937-49, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27009162

RESUMO

The mitral cells (MCs) of the mammalian olfactory bulb (OB) constitute one of two populations of principal neurons (along with middle/deep tufted cells) that integrate afferent olfactory information with top-down inputs and intrinsic learning and deliver output to downstream olfactory areas. MC activity is regulated in part by inhibition from granule cells, which form reciprocal synapses with MCs along the extents of their lateral dendrites. However, with MC lateral dendrites reaching over 1.5 mm in length in rats, the roles of distal inhibitory synapses pose a quandary. Here, we systematically vary the properties of a MC model to assess the capacity of inhibitory synaptic inputs on lateral dendrites to influence afferent information flow through MCs. Simulations using passivized models with varying dendritic morphologies and synaptic properties demonstrated that, even with unrealistically favorable parameters, passive propagation fails to convey effective inhibitory signals to the soma from distal sources. Additional simulations using an active model exhibiting action potentials, subthreshold oscillations, and a dendritic morphology closely matched to experimental values further confirmed that distal synaptic inputs along the lateral dendrite could not exert physiologically relevant effects on MC spike timing at the soma. Larger synaptic conductances representative of multiple simultaneous inputs were not sufficient to compensate for the decline in signal with distance. Reciprocal synapses on distal MC lateral dendrites may instead serve to maintain a common fast oscillatory clock across the OB by delaying spike propagation within the lateral dendrites themselves.


Assuntos
Inibição Neural/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Sinapses/fisiologia , Animais , Forma Celular/fisiologia , Tamanho Celular , Simulação por Computador , Impedância Elétrica , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Neurônios/citologia , Bulbo Olfatório/citologia , Receptores de GABA-A/metabolismo , Olfato/fisiologia
7.
J Neurophysiol ; 114(6): 3177-200, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26334007

RESUMO

Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.


Assuntos
Acetilcolina/farmacologia , Neurônios Adrenérgicos/fisiologia , Neurônios Colinérgicos/fisiologia , Modelos Neurológicos , Norepinefrina/farmacologia , Bulbo Olfatório/fisiologia , Potenciais de Ação , Neurônios Adrenérgicos/efeitos dos fármacos , Neurônios Adrenérgicos/metabolismo , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Potenciais da Membrana , Camundongos , Bulbo Olfatório/citologia , Ratos
8.
Nat Methods ; 9(3): 297-302, 2012 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-22266542

RESUMO

Understanding and treatment of spinal cord pathology is limited in part by a lack of time-lapse in vivo imaging strategies at the cellular level. We developed a chronically implanted spinal chamber and surgical procedure suitable for time-lapse in vivo multiphoton microscopy of mouse spinal cord without the need for repeat surgical procedures. We routinely imaged mice repeatedly for more than 5 weeks postoperatively with up to ten separate imaging sessions and observed neither motor-function deficit nor neuropathology in the spinal cord as a result of chamber implantation. Using this chamber we quantified microglia and afferent axon dynamics after a laser-induced spinal cord lesion and observed massive microglia infiltration within 1 d along with a heterogeneous dieback of axon stumps. By enabling chronic imaging studies over timescales ranging from minutes to months, our method offers an ideal platform for understanding cellular dynamics in response to injury and therapeutic interventions.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Monitorização Ambulatorial/instrumentação , Monitorização Ambulatorial/veterinária , Técnicas de Cultura de Órgãos/instrumentação , Medula Espinal/citologia , Animais , Desenho de Equipamento , Falha de Equipamento , Camundongos , Miniaturização , Próteses e Implantes
9.
J Neurosci ; 33(7): 3037-58, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407960

RESUMO

Cholinergic inputs from the basal forebrain regulate multiple olfactory bulb (OB) functions, including odor discrimination, perceptual learning, and short-term memory. Previous studies have shown that nicotinic cholinergic receptor activation sharpens mitral cell chemoreceptive fields, likely via intraglomerular circuitry. Muscarinic cholinergic activation is less well understood, though muscarinic receptors are implicated in olfactory learning and in the regulation of synchronized oscillatory dynamics in hippocampus and cortex. To understand the mechanisms underlying cholinergic neuromodulation in OB, we developed a biophysical model of the OB neuronal network including both glomerular layer and external plexiform layer (EPL) computations and incorporating both nicotinic and muscarinic neuromodulatory effects. Our simulations show how nicotinic activation within glomerular circuits sharpens mitral cell chemoreceptive fields, even in the absence of EPL circuitry, but does not facilitate intrinsic oscillations or spike synchronization. In contrast, muscarinic receptor activation increases mitral cell spike synchronization and field oscillatory power by potentiating granule cell excitability and lateral inhibitory interactions within the EPL, but it has little effect on mitral cell firing rates and hence does not sharpen olfactory representations under a rate metric. These results are consistent with the theory that EPL interactions regulate the timing, rather than the existence, of mitral cell action potentials and perform their computations with respect to a spike timing-based metric. This general model suggests that the roles of nicotinic and muscarinic receptors in olfactory bulb are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations.


Assuntos
Fenômenos Biofísicos/fisiologia , Modelos Neurológicos , Bulbo Olfatório/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Algoritmos , Animais , Biofísica , Sinalização do Cálcio/fisiologia , Membrana Celular/fisiologia , Simulação por Computador , Grânulos Citoplasmáticos/fisiologia , Cinética , Potenciais da Membrana/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Condução Nervosa/fisiologia , Neurônios/fisiologia , Odorantes , Bulbo Olfatório/citologia , Ratos , Receptores Muscarínicos/fisiologia , Receptores Nicotínicos/fisiologia , Reprodutibilidade dos Testes
10.
J Neurosci ; 33(45): 17597-602, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24198350

RESUMO

A central goal of neuroscience is to understand how populations of neurons build and manipulate representations of percepts that provide useful information about the environment. This symposium explores the fundamental properties of these representations and the perceptual spaces in which they are organized. Spanning the domains of color, visual texture, environmental sound, music, tactile quality, and odor, we show how the geometric structures of perceptual spaces can be determined experimentally and how these structures provide insights into the principles of neural coding and the neural mechanisms that generate the codes, and into the neural processing of complex sensory stimuli. The diversity of the neural architecture in these different sensory systems provides an opportunity to compare their different solutions to common problems: the need for dimensionality reduction, strategies for topographic or nontopographic mapping, the utility of the higher-order statistical structure inherent in natural sensory stimuli, and the constraints of neural hardware.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Percepção/fisiologia , Mapeamento Encefálico , Humanos , Vias Neurais/fisiologia
11.
Hippocampus ; 24(9): 1070-80, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24753146

RESUMO

Inhibition is an important component of many cognitive functions, including memory. For example, the retrieval-induced forgetting (RIF) effect occurs when extra practice with some items from a study list inhibits the retrieval of the nonpracticed items relative to a baseline condition that does not involve extra practice. Although counterintuitive, the RIF phenomenon may be important for resolving interference by inhibiting potentially competing retrieval targets. Neuroimaging studies suggest that the hippocampus and prefrontal cortex are involved in the RIF effect, but controlled lesion studies have not yet been performed. We developed a rodent model of the RIF training procedure and trained control rats and rats with temporary inactivation of the hippocampus or medial prefrontal cortex (mPFC). Rats were trained on a list of odor cues, presented in cups of digging medium with a buried reward, followed by additional practice trials with a subset of the cues. We then tested the rats' memories for the cues and their association with reward by presenting them with unbaited cups containing the test odorants and measuring how long they persisted in digging. Control rats exhibited a robust RIF effect in which memory for the nonpracticed odors was significantly inhibited. Thus, extra practice with some odor cues inhibited memory for the others, relative to a baseline condition that involved an identical amount of training. Inactivation of either the hippocampus or the mPFC blocked the RIF effect. We also constructed a computational model of a representational learning circuit to simulate the RIF effect. We show in this model that "sideband suppression" of similar memory representations can reproduce the RIF effect and that alteration of the suppression parameters and learning rate can reproduce the lesion effects seen in our rats. Our results suggest that the RIF effect is widespread and that inhibitory processes are an important feature of memory function.


Assuntos
Função Executiva/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Prática Psicológica , Córtex Pré-Frontal/fisiologia , Animais , Aprendizagem por Associação/fisiologia , Simulação por Computador , Sinais (Psicologia) , Agonistas de Receptores de GABA-A/farmacologia , Hipocampo/efeitos dos fármacos , Masculino , Modelos Neurológicos , Atividade Motora/fisiologia , Muscimol/farmacologia , Testes Neuropsicológicos , Odorantes , Percepção Olfatória/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos Long-Evans , Fatores de Tempo
12.
Front Behav Neurosci ; 16: 1015484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36600992

RESUMO

Mouse pups produce. ultrasonic vocalizations (USVs) in response to isolation from the nest (i.e., isolation USVs). Rates and acoustic features of isolation USVs change dramatically over the first two weeks of life, and there is also substantial variability in the rates and acoustic features of isolation USVs at a given postnatal age. The factors that contribute to within age variability in isolation USVs remain largely unknown. Here, we explore the extent to which non-vocal behaviors of mouse pups relate to the within age variability in rates and acoustic features of their USVs. We recorded non-vocal behaviors of isolated C57BL/6J mouse pups at four postnatal ages (postnatal days 5, 10, 15, and 20), measured rates of isolation USV production, and applied a combination of pre-defined acoustic feature measurements and an unsupervised machine learning-based vocal analysis method to examine USV acoustic features. When we considered different categories of non-vocal behavior, our analyses revealed that mice in all postnatal age groups produce higher rates of isolation USVs during active non-vocal behaviors than when lying still. Moreover, rates of isolation USVs are correlated with the intensity (i.e., magnitude) of non-vocal body and limb movements within a given trial. In contrast, USVs produced during different categories of non-vocal behaviors and during different intensities of non-vocal movement do not differ substantially in their acoustic features. Our findings suggest that levels of behavioral arousal contribute to within age variability in rates, but not acoustic features, of mouse isolation USVs.

13.
Front Comput Neurosci ; 14: 579143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071767

RESUMO

We describe an integrated theory of olfactory systems operation that incorporates experimental findings across scales, stages, and methods of analysis into a common framework. In particular, we consider the multiple stages of olfactory signal processing as a collective system, in which each stage samples selectively from its antecedents. We propose that, following the signal conditioning operations of the nasal epithelium and glomerular-layer circuitry, the plastic external plexiform layer of the olfactory bulb effects a process of category learning-the basis for extracting meaningful, quasi-discrete odor representations from the metric space of undifferentiated olfactory quality. Moreover, this early categorization process also resolves the foundational problem of how odors of interest can be recognized in the presence of strong competitive interference from simultaneously encountered background odorants. This problem is fundamentally constraining on early-stage olfactory encoding strategies and must be resolved if these strategies and their underlying mechanisms are to be understood. Multiscale general theories of olfactory systems operation are essential in order to leverage the analytical advantages of engineered approaches together with our expanding capacity to interrogate biological systems.

14.
Nat Mach Intell ; 2(3): 181-191, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38650843

RESUMO

We present a neural algorithm for the rapid online learning and identification of odourant samples under noise, based on the architecture of the mammalian olfactory bulb and implemented on the Intel Loihi neuromorphic system. As with biological olfaction, the spike timing-based algorithm utilizes distributed, event-driven computations and rapid (one-shot) online learning. Spike timing-dependent plasticity rules operate iteratively over sequential gamma-frequency packets to construct odour representations from the activity of chemosensor arrays mounted in a wind tunnel. Learned odourants then are reliably identified despite strong destructive interference. Noise resistance is further enhanced by neuromodulation and contextual priming. Lifelong learning capabilities are enabled by adult neurogenesis. The algorithm is applicable to any signal identification problem in which high-dimensional signals are embedded in unknown backgrounds.

15.
Sci Rep ; 10(1): 11239, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641693

RESUMO

Recent technological advances have introduced diverse engineered nanoparticles (ENPs) into our air, water, medicine, cosmetics, clothing, and food. However, the health and environmental effects of these increasingly common ENPs are still not well understood. In particular, potential neurological effects are one of the most poorly understood areas of nanoparticle toxicology (nanotoxicology), in that low-to-moderate neurotoxicity can be subtle and difficult to measure. Culturing primary neuron explants on planar microelectrode arrays (MEAs) has emerged as one of the most promising in vitro techniques with which to study neuro-nanotoxicology, as MEAs enable the fluorescent tracking of nanoparticles together with neuronal electrical activity recording at the submillisecond time scale, enabling the resolution of individual action potentials. Here we examine the dose-dependent neurotoxicity of dextran-coated iron oxide nanoparticles (dIONPs), a common type of functionalized ENP used in biomedical applications, on cultured primary neurons harvested from postnatal day 0-1 mouse brains. A range of dIONP concentrations (5-40 µg/ml) were added to neuron cultures, and cells were plated either onto well plates for live cell, fluorescent reactive oxidative species (ROS) and viability observations, or onto planar microelectrode arrays (MEAs) for electrophysiological measurements. Below 10 µg/ml, there were no dose-dependent cellular ROS increases or effects in MEA bursting behavior at sub-lethal dosages. However, above 20 µg/ml, cell death was obvious and widespread. Our findings demonstrate a significant dIONP toxicity in cultured neurons at concentrations previously reported to be safe for stem cells and other non-neuronal cell types.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Neurônios/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dextranos/química , Relação Dose-Resposta a Droga , Nanopartículas Magnéticas de Óxido de Ferro/química , Camundongos , Neurônios/fisiologia , Cultura Primária de Células , Testes de Toxicidade Aguda
16.
Behav Neurosci ; 134(4): 332-343, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32378908

RESUMO

Learning to associate the context in which a stimulus occurs is an important aspect of animal learning. We propose that the association of an olfactory stimulus with its multisensory context is mediated by projections from ventral hippocampus (vHC) networks to the anterior olfactory nucleus (AON). Using a contextually cued olfactory discrimination task, rats were trained to associate 2 olfactory stimuli with different responses depending on visuospatial context. Temporary lesions of the AON or vHC impaired performance on this task. In contrast, such lesions did not impair performance on a noncontextual olfactory discrimination task. Moreover, vHC lesions also impaired performance on an analogous contextually cued texture discrimination task, whereas AON lesions affected only olfactory contextual associations. We describe a distinct role for the AON in olfactory processing and conclude that early olfactory networks such as the olfactory bulb and AON function as multimodal integration networks rather than processing olfactory signals exclusively. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Assuntos
Aprendizagem/fisiologia , Córtex Olfatório/fisiologia , Percepção Olfatória/fisiologia , Animais , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Sinais (Psicologia) , Aprendizagem por Discriminação , Hipocampo/fisiologia , Masculino , Odorantes , Bulbo Olfatório/fisiologia , Córtex Olfatório/metabolismo , Condutos Olfatórios/fisiologia , Ratos , Ratos Long-Evans , Olfato/fisiologia
17.
J Neurosci ; 28(10): 2383-93, 2008 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-18322085

RESUMO

Neurogenesis, the division, migration, and differentiation of new neurons, occurs throughout life. Brain derived neurotrophic factor (BDNF) has been identified as a potential signaling molecule regulating neurogenesis in the subventricular zone (SVZ), but its functional consequences in vivo have not been well defined. We report marked and unexpected deficits in survival but not proliferation of newly born cells of adult knock-in mice containing a variant form of BDNF [a valine (Val) to methionine (Met) substitution at position 66 in the prodomain of BDNF (Val66Met)], a genetic mutation shown to lead to a selective impairment in activity-dependent BDNF secretion. Utilizing knock-out mouse lines, we identified BDNF and tyrosine receptor kinase B (TrkB) as the critical molecules for the observed impairments in neurogenesis, with p75 knock-out mice showing no effect on cell proliferation or survival. We then localized the activated form of TrkB to a discrete population of cells, type A migrating neuroblasts, and demonstrate a decrease in TrkB phosphorylation in the SVZ of Val66Met mutant mice. With these findings, we identify TrkB signaling, potentially through activity dependent release of BDNF, as a critical step in the survival of migrating neuroblasts. Utilizing a behavioral task shown to be sensitive to disruptions in olfactory bulb neurogenesis, we identified specific impairments in spontaneous olfactory discrimination, but not general olfactory sensitivity or habituation to olfactory stimuli in BDNF mutant mice. Through these observations, we have identified novel links between genetic variant BDNF and adult neurogenesis in vivo, which may contribute to significant impairments in olfactory function.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Aprendizagem por Discriminação/fisiologia , Variação Genética , Bulbo Olfatório/citologia , Bulbo Olfatório/crescimento & desenvolvimento , Condutos Olfatórios/fisiologia , Substituição de Aminoácidos/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/deficiência , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Células Cultivadas , Masculino , Metionina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bulbo Olfatório/fisiologia , Estrutura Terciária de Proteína/genética , Receptor trkB/genética , Células-Tronco/fisiologia , Valina/genética
18.
Mamm Genome ; 20(9-10): 654-63, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19513790

RESUMO

Rasgrf1 is imprinted and expressed preferentially from the paternal allele in neonatal mouse brain. At weaning, expression becomes biallelic. Using a mouse model, we assayed the effects of perturbing imprinted Rasgrf1 expression in mice with the following imprinted expression patterns: monoallelic paternal (wild type), monoallelic maternal (maternal only), biallelic (both alleles transcribed), and null (neither allele transcribed). All genotypes exhibit biallelic expression around weaning. Consequences of this transient imprinting perturbation are manifested as overall size differences that correspond to the amount of neonatal Rasgrf1 expressed and are persistent, extending into adulthood. Biallelic mice are the largest and overexpress Rasgrf1 relative to wild-type mice, null mice are the smallest and underexpress Rasgrf1 as neonates, and the two monoallelically expressing genotypes are intermediate and indistinguishable from one another, in both size and Rasgrf1 expression level. Importantly, these data support one of the key underlying assumptions of the "conflict hypothesis" that describes the evolution of genomic imprinting in mammals and supposes that equivalent amounts of imprinted gene expression produce equivalent phenotypes, regardless of which parental allele is transcribed. Concordant with the difference in overall body size, we identify differences in IGF-1 levels, both in serum protein and as liver transcript, and identify additional differential expression of components upstream of IGF-1 release in the GH/IGF-1 axis. These data suggest that imprinted Rasgrf1 expression affects GH/IGF-1 axis function, and that the consequences of Rasgrf1 inputs to this axis persist beyond the time period when expression is restricted via epigenetic mechanisms, suggesting that proper neonatal Rasgrf1 expression levels are critical for development.


Assuntos
Impressão Genômica , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos/crescimento & desenvolvimento , Mutação , ras-GRF1/genética , Animais , Tamanho Corporal , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fator de Crescimento Insulin-Like I/genética , Masculino , Camundongos/genética , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , ras-GRF1/metabolismo
19.
Behav Neurosci ; 123(1): 26-35, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19170427

RESUMO

Sensory representations depend strongly on the descending regulation of perceptual processing. Generalization among similar stimuli is a fundamental cognitive process that defines the extent of the variance in physical stimulus properties that becomes categorized together and associated with a common contingency, thereby establishing units of meaning. The olfactory system provides an experimentally tractable model system in which to study the interactions of these physical and psychological factors within the framework of their underlying neurophysiological mechanisms. The authors here show that olfactory associative learning systematically regulates gradients of odor generalization. Specifically, increasing odor-reward pairings, odor concentration, or reward quality--each a determinant of associative learning--significantly transformed olfactory generalization gradients, each narrowing the range of variance in odor quality perceived as likely to share the learned contingency of a conditioned odor stimulus. However, differences in the qualitative features of these three transformations suggest that these different determinants of learning are not necessarily theoretically interchangeable. These results demonstrate that odor representations are substantially shaped by experience and descending influences.


Assuntos
Aprendizagem por Associação/fisiologia , Generalização Psicológica/fisiologia , Odorantes , Condutos Olfatórios/fisiologia , Análise de Variância , Animais , Condicionamento Clássico , Discriminação Psicológica , Relação Dose-Resposta a Droga , Preferências Alimentares , Masculino , Camundongos , Reprodutibilidade dos Testes , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem
20.
Learn Mem ; 15(3): 117-25, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18299438

RESUMO

Habituation is one of the oldest forms of learning, broadly expressed across sensory systems and taxa. Here, we demonstrate that olfactory habituation induced at different timescales (comprising different odor exposure and intertrial interval durations) is mediated by different neural mechanisms. First, the persistence of habituation memory is greater when mice are habituated on longer timescales. Second, the specificity of the memory (degree of cross-habituation to similar stimuli) also depends on induction timescale. Third, we demonstrate a pharmacological double dissociation between the glutamatergic mechanisms underlying short- and long-timescale odor habituation. LY341495, a class II/III metabotropic glutamate receptor antagonist, blocked habituation only when the induction timescale was short. Conversely, MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, prevented habituation only when the timescale was long. Finally, whereas short-timescale odor habituation is mediated within the anterior piriform cortex, infusion of MK-801 into the olfactory bulbs prevented odor habituation only at longer timescales. Thus, we demonstrate two neural mechanisms underlying simple olfactory learning, distinguished by their persistence and specificity, mediated by different olfactory structures and pharmacological effectors, and differentially utilized based solely on the timescale of odor presentation.


Assuntos
Memória/fisiologia , Condutos Olfatórios/fisiologia , Aminoácidos/farmacologia , Animais , Mapeamento Encefálico , Maleato de Dizocilpina/administração & dosagem , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Habituação Psicofisiológica/efeitos dos fármacos , Injeções , Masculino , Camundongos , Camundongos Endogâmicos , Odorantes , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/fisiologia , Condutos Olfatórios/efeitos dos fármacos , Olfato , Fatores de Tempo , Xantenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa