RESUMO
Skeletal muscle regeneration relies on the tightly temporally regulated lineage progression of muscle stem/progenitor cells (MPCs) from activation to proliferation and, finally, differentiation. However, with aging, MPC lineage progression is disrupted and delayed, ultimately causing impaired muscle regeneration. Extracellular vesicles (EVs) have attracted broad attention as next-generation therapeutics for promoting tissue regeneration. As a next step toward clinical translation, strategies to manipulate EV effects on downstream cellular targets are needed. Here, we developed an engineering strategy to tune the therapeutic potential of EVs using nanotopographical cues. We found that EVs released by young MPCs cultured on flat substrates (fEVs) promoted the proliferation of aged MPCs while EVs released by MPCs cultured on nanogratings (nEVs) promoted myogenic differentiation. We then employed a bioengineered 3D muscle aging model to optimize the administration protocol and test the therapeutic potential of fEVs and nEVs in a high-throughput manner. We found that the sequential administration first of fEVs during the phase of MPC proliferative expansion (i.e., 1 day after injury) followed by nEV administration at the stage of MPC differentiation (i.e., 3 days after injury) enhanced aged muscle regeneration to a significantly greater extent than fEVs and nEVs delivered either in isolation or mixed. The beneficial effects of the sequential EV treatment strategy were further validated in vivo, as evidenced by increased myofiber size and improved functional recovery. Collectively, our study demonstrates the ability of topographical cues to tune EV therapeutic potential and highlights the importance of optimizing the EV administration strategy to accelerate aged skeletal muscle regeneration.
Assuntos
Sinais (Psicologia) , Vesículas Extracelulares , Células Cultivadas , Músculo Esquelético , Diferenciação CelularRESUMO
Extracellular vesicles (EVs) transport biological content between cells to mediate physiological processes. The association between EVs and resilience, the ability to cope with stress, is unknown. Using unbiased machine learning approaches, we aimed to identify a biological profile of resilience. Twenty servicemen (27.8 ± 5.9 years) completed the Connor Davidson Resilience (CD-RISC) questionnaire and were exposed to daily physical and cognitive exertion with 48-hr sleep and caloric restriction. Blood samples from baseline and the second day of stress were analyzed for neuroendocrine biomarkers impacted by military stress. EVs were isolated from plasma and stained with antibodies associated with exosomes (CD63), microvesicles (VAMP3), and apoptotic bodies (THSD1). Individuals were separated into high (n = 10, CD-RISC > 90) and low (n = 10, CD-RISC < 79) resilience. EV features were stratified by size, then down-selected using regression trees and compared between groups. Diagnostic accuracy was assessed using receiver operating characteristic curves. Compared to low resilience, high resilience demonstrated a greater increase in variability of THSD1 local bright spot intensities among large-sized EVs in response to stress (p = 0.002, Hedges' g = 1.59). Among medium-sized EVs, high resilience exhibited a greater decrease in side scatter intensity (p = 0.014, Hedges' g = 1.17). Both features demonstrated high to moderate diagnostic accuracy for high resilience (AUC = 0.90 and 0.79). In contrast, neuroendocrine biomarker concentrations were similar between groups. The increase in variability among THSD1 + EVs in high, but not low, resilient individuals following stress may suggest high resilience is accompanied by stress-triggered apoptotic adaptations to the environment that are not detected in neuroendocrine biomarkers.
Assuntos
Vesículas Extracelulares , Militares , Resiliência Psicológica , Biomarcadores Ambientais , Humanos , Militares/psicologia , Inquéritos e QuestionáriosRESUMO
Extracellular vesicles (EVs) are mediators of physiological changes that occur during physical exertion. This study examined the effects of physical exertion with and without sleep and caloric restriction on EV size, concentration, and surface proteins in men and women. Twenty participants (10 men) completed a 5-day simulated military operational stress protocol with daily physical exertion. Blood was drawn before and immediately after exertion at baseline (D1) and following 48-h of sleep and caloric restriction (D3). EV size and concentration were assessed using nanoparticle tracking analysis. EVs were identified with markers associated with exosomes (CD63), microvesicles (VAMP3), apoptotic bodies (THSD1), and skeletal muscle-derived EVs (SGCA) and quantified using imaging flow cytometry. Interactive and main effects of sex, day, and time on EVs were assessed using three-way ANOVAs. EV concentration declined pre to postexertion in women on D1 and D3 but was stable in men. EV size increased from pre to postexertion and from D1 to D3 in men and women. Physical exertion following sleep and caloric restriction increased CD63+ EV concentration, proportion of total EVs, and CD63 surface protein expression regardless of sex. The proportion of SGCA+ EVs increased in men and women following exertion and from D1 to D3 but was higher in women than in men. No differences were observed in VAMP3+ and THSD1+ EVs. This study identified sexually dimorphic EV profiles in response to various stressors. Further investigations are necessary to determine if dimorphic EV responses affect health and performance outcomes during stress.NEW & NOTEWORTHY Sex is understudied in EV research, and most studies limit EV analysis to single stress conditions such as exercise. Multistress conditions consisting of physical exertion and sleep and caloric restriction are common in real-world settings. We demonstrate that physical exertion results in sex-specific EV signatures and that EV profiles vary according to single versus multistress conditions. Our data highlight important biological and ecological characteristics that should be considered in EV research.
Assuntos
Exossomos , Vesículas Extracelulares , Militares , Biomarcadores/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/fisiologia , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismoRESUMO
Heterochronic blood exchange (HBE) has demonstrated that circulating factors restore youthful features to aged tissues. However, the systemic mediators of those rejuvenating effects remain poorly defined. We show here that the beneficial effect of young blood on aged muscle regeneration was diminished when serum was depleted of extracellular vesicles (EVs). Whereas EVs from young animals rejuvenate aged cell bioenergetics and skeletal muscle regeneration, aging shifts EV subpopulation heterogeneity and compromises downstream benefits on recipient cells. Machine learning classifiers revealed that aging shifts the nucleic acid, but not protein, fingerprint of circulating EVs. Alterations in sub-population heterogeneity were accompanied by declines in transcript levels of the pro-longevity protein, α-Klotho, and injection of EVs improved muscle regeneration in a Klotho mRNA-dependent manner. These studies demonstrate that EVs play a key role in the rejuvenating effects of HBE and that Klotho transcripts within EVs phenocopy the effects of young serum on aged skeletal muscle.
Assuntos
Envelhecimento , Vesículas Extracelulares , Animais , Envelhecimento/fisiologia , Músculo Esquelético/metabolismo , Vesículas Extracelulares/metabolismo , Regeneração/genéticaRESUMO
The year 2017 marked the 20th anniversary of the first publication describing Klotho. This single protein was and is remarkable in that its absence in mice conferred an accelerated aging, or progeroid, phenotype with a dramatically shortened life span. On the other hand, genetic overexpression extended both health span and life span by an impressive 30%. Not only has Klotho deficiency been linked to a number of debilitating age-related illnesses but many subsequent reports have lent credence to the idea that Klotho can compress the period of morbidity and extend the life span of both model organisms and humans. This suggests that Klotho functions as an integrator of organ systems, making it both a promising tool for advancing our understanding of the biology of aging and an intriguing target for interventional studies. In this review, we highlight advances in our understanding of Klotho as well as key challenges that have somewhat limited our view, and thus translational potential, of this potent protein.