RESUMO
This corrects the article DOI: 10.1103/PhysRevLett.123.033201.
RESUMO
We describe an optical atomic clock based on quantum-logic spectroscopy of the ^{1}S_{0}â^{3}P_{0} transition in ^{27}Al^{+} with a systematic uncertainty of 9.4×10^{-19} and a frequency stability of 1.2×10^{-15}/sqrt[τ]. A ^{25}Mg^{+} ion is simultaneously trapped with the ^{27}Al^{+} ion and used for sympathetic cooling and state readout. Improvements in a new trap have led to reduced secular motion heating, compared to previous ^{27}Al^{+} clocks, enabling clock operation with ion secular motion near the three-dimensional ground state. Operating the clock with a lower trap drive frequency has reduced excess micromotion compared to previous ^{27}Al^{+} clocks. Both of these improvements have led to a reduced time-dilation shift uncertainty. Other systematic uncertainties including those due to blackbody radiation and the second-order Zeeman effect have also been reduced.
RESUMO
We describe a framework for calculating the frequency shift and uncertainty of trapped-ion optical atomic clocks caused by background-gas collisions, and apply this framework to an 27Al+ clock to enable a total fractional systematic uncertainty below 10-18. For this clock, with 38(19) nPa of room-temperature H2 background gas, we find that collisional heating generates a non-thermal distribution of motional states with a mean time-dilation shift of order 10-16 at the end of a 150 ms probe, which is not detected by sideband thermometry energy measurements. However, the contribution of collisional heating to the spectroscopy signal is highly suppressed and we calculate the BGC shift to be -0.6(2.4) × 10-19, where the shift is due to collisional heating time dilation and the uncertainty is dominated by the worst case ±π/2 bound used for collisional phase shift of the 27Al+ superposition state. We experimentally validate the framework and determine the background-gas pressure in situ using measurements of the rate of collisions that cause reordering of mixed-species ion pairs.
RESUMO
A novel home-built system for imaging cold atom samples is presented using a readily available astronomy camera which has the requisite sensitivity but no timing-control. We integrate the camera with LabVIEW achieving fast, low-jitter imaging with a convenient user-defined interface. We show that our system takes precisely timed millisecond exposures and offers significant improvements in terms of system jitter and readout time over previously reported home-built systems. Our system rivals current commercial "black box" systems in performance and user-friendliness.