Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(24): 11021-11029, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38819699

RESUMO

We combined synchrotron-based infrared absorbance and Raman scattering spectroscopies with diamond anvil cell techniques and a symmetry analysis to explore the properties of multiferroic (NH4)2FeCl5·H2O under extreme pressure-temperature conditions. Compression-induced splitting of the Fe-Cl stretching, Cl-Fe-Cl and Cl-Fe-O bending, and NH4+ librational modes defines two structural phase transitions, and a group-subgroup analysis reveals space group sequences that vary depending upon proximity to the unexpectedly wide order-disorder transition. We bring these findings together with prior high-field work to develop the pressure-temperature-magnetic field phase diagram uncovering competing polar, chiral, and magnetic phases in this system.

2.
Inorg Chem ; 61(8): 3434-3442, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35171587

RESUMO

We combine high field polarization, magneto-infrared spectroscopy, and lattice dynamics calculations with prior magnetization to explore the properties of (NH4)2[FeCl5·(H2O)]─a type II molecular multiferroic in which the mixing between charge, structure, and magnetism is controlled by intermolecular hydrogen and halogen bonds. Electric polarization is sensitive to the series of field-induced spin reorientations, increasing linearly with the field and reaching a maximum before collapsing to zero across the quasi-collinear to collinear-sinusoidal reorientation due to the restoration of inversion symmetry. Magnetoelectric coupling is on the order of 1.2 ps/m for the P∥c, H∥c configuration between 5 and 25 T at 1.5 K. In this range, the coupling takes place via an orbital hybridization mechanism. Other forms of mixing are active in (NH4)2[FeCl5·(H2O)] as well. Magneto-infrared spectroscopy reveals that all of the vibrational modes below 600 cm-1 are sensitive to the field-induced transition to the fully saturated magnetic state at 30 T. We analyze these local lattice distortions and use frequency shifts to extract spin-phonon coupling constants for the Fe-O stretch, Fe-OH2 rock, and NH4+ libration. Inspection also reveals subtle symmetry breaking of the ammonium counterions across the ferroelectric transition. The coexistence of such varied mixing processes in a platform with intermolecular hydrogen- and halogen-bonding opens the door to greater understanding of multiferroics and magnetoelectrics governed by through-space interactions.

3.
Inorg Chem ; 59(4): 2127-2135, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32009403

RESUMO

We measured the infrared vibrational properties of two copper-containing coordination polymers, [Cu(pyz)2(2-HOpy)2](PF6)2 and [Cu(pyz)1.5(4-HOpy)2](ClO4)2, under different external stimuli in order to explore the microscopic aspects of spin-lattice coupling. While the temperature and pressure control hydrogen bonding, an applied field drives these materials from the antiferromagnetic → fully saturated state. Analysis of the pyrazine (pyz)-related vibrational modes across the magnetic quantum-phase transition provides a superb local probe of magnetoelastic coupling because the pyz ligand functions as the primary exchange pathway and is present in both systems. Strikingly, the PF6- compound employs several pyz-related distortions in support of the magnetically driven transition, whereas the ClO4- system requires only a single out-of-plane pyz bending mode. Bringing these findings together with magnetoinfrared spectra from other copper complexes reveals spin-lattice coupling across the magnetic quantum-phase transition as a function of the structural and magnetic dimensionality. Coupling is maximized in [Cu(pyz)1.5(4-HOpy)2](ClO4)2 because of its ladderlike character. Although spin-lattice interactions can also be explored under compression, differences in the local structure and dimensionality drive these materials to unique high-pressure phases. Symmetry analysis suggests that the high-pressure phase of the ClO4- compound may be ferroelectric.

4.
Inorg Chem ; 57(18): 11569-11577, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30141625

RESUMO

We bring together magnetization, infrared spectroscopy, and lattice dynamics calculations to uncover the magnetic field-temperature ( B- T) phase diagrams and vibrational properties of the [(CH3)2NH2] M(HCOO)3 ( M = Mn2+, Co2+, Ni2+) family of multiferroics. While the magnetically driven transition to the fully saturated state in [(CH3)2NH2]Mn(HCOO)3 takes place at 15.3 T, substitution with Ni or Co drives the critical fields up toward 100 T, an unexpectedly high energy scale for these compounds. Analysis of the infrared spectrum of the Mn and Ni compounds across TC reveals doublet splitting of the formate bending mode which functions as an order parameter of the ferroelectric transition. By contrast, [(CH3)2NH2]Co(HCOO)3 reveals a surprising framework rigidity across the order-disorder transition due to modest distortions around the Co2+ centers. The transition to the ferroelectric state is thus driven by the dimethylammonium cation freezing and the resulting hydrogen bonding. Under applied field, the Mn (and most likely, the Ni) compounds engage the formate bending mode to facilitate the transition to their fully saturated magnetic states, whereas the Co complex adopts a different mechanism involving formate stretching distortions to lower the overall magnetic energy. Similar structure-property relations involving substitution of transition-metal centers and control of the flexible molecular architecture are likely to exist in other molecule-based multiferroics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa