Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Immunol ; 189(8): 3947-56, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22988034

RESUMO

CD4(+)Foxp3(+) regulatory T cells (Treg) are essential for immune homeostasis and maintenance of self-tolerance. They are produced in the thymus and also generated de novo in the periphery in a TGF-ß-dependent manner. Foxp3(+) Treg are also required to achieve tolerance to transplanted tissues when induced by coreceptor or costimulation blockade. Using TCR-transgenic mice to avoid issues of autoimmune pathology, we show that Foxp3 expression is both necessary and sufficient for tissue tolerance by coreceptor blockade. Moreover, the known need in tolerance induction for TGF-ß signaling to T cells can wholly be explained by its role in induction of Foxp3, as such signaling proved dispensable for the suppressive process. We analyzed the relative contribution of TGF-ß and Foxp3 to the transcriptome of TGF-ß-induced Treg and showed that TGF-ß elicited a large set of downregulated signature genes. The number of genes uniquely modulated due to the influence of Foxp3 alone was surprisingly limited. Retroviral-mediated conditional nuclear expression of Foxp3 proved sufficient to confer transplant-suppressive potency on CD4(+) T cells and was lost once nuclear Foxp3 expression was extinguished. These data support a dual role for TGF-ß and Foxp3 in induced tolerance, in which TGF-ß stimulates Foxp3 expression, for which sustained expression is then associated with acquisition of tolerance.


Assuntos
Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Linfócitos T Reguladores/imunologia , Tolerância ao Transplante , Animais , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/deficiência , Sobrevivência de Enxerto/genética , Sobrevivência de Enxerto/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/fisiologia , Tolerância ao Transplante/genética
2.
Immunol Rev ; 236: 203-18, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20636819

RESUMO

A variety of different molecular mechanisms have been proposed to explain the suppressive action of regulatory T cells, including the production of anti-inflammatory cytokines, negative costimulatory ligands, indoleamine 2,3-dioxygenase-mediated tryptophan catabolism, CD73-mediated adenosine generation, and downregulation of antigen-presenting cells. Until now it has been unclear how important each of these different mechanisms might be and how they are coordinated. In this review, we examine the hypothesis that it is the interaction between regulatory T cells and dendritic cells that creates a local microenvironment depleted of essential amino acids and rich in adenosine that leads to the amplification of a range of different tolerogenic signals. These signals are all eventually integrated by mammalian target of rapamycin inhibition, which enables the induction of new forkhead box protein 3-expressing Tregs. If correct, this provides a molecular explanation for the in vivo phenomena of linked suppression and infectious tolerance.


Assuntos
Comunicação Celular/imunologia , Células Dendríticas/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Modelos Imunológicos , Linfócitos T Reguladores/metabolismo
3.
Immunology ; 140(4): 391-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23952610

RESUMO

The mammalian target of rapamycin (mTOR) pathway is an important integrator of nutrient-sensing signals in all mammalian cells, and acts to coordinate the cell proliferation with the availability of nutrients such as glucose, amino acids and energy (oxygen and ATP). A large part of the immune response depends on the proliferation and clonal expansion of antigen-specific T cells, which depends on mTOR activation, and the pharmacological inhibition of this pathway by rapamycin is therefore potently immunosuppressive. It is only recently, however, that we have started to understand the more subtle details of how the mTOR pathway is involved in controlling the differentiation of effector versus memory CD8(+) T cells and the decision to generate different CD4(+) helper T-cell subsets. In particular, this review will focus on how nutrient sensing via mTOR controls the expression of the master transcription factor for regulatory T cells in order to maintain the balance between tolerance and inflammation.


Assuntos
Linfócitos T CD8-Positivos/enzimologia , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/enzimologia , Linfócitos T Reguladores/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Hipóxia Celular , Metabolismo Energético , Humanos , Tolerância Imunológica , Memória Imunológica , Inflamação/enzimologia , Inflamação/imunologia , Ativação Linfocitária , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia
4.
Eur J Immunol ; 41(10): 2955-65, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21770045

RESUMO

Levels of anti-inflammatory extracellular adenosine are controlled by the sequential action of the ectonucleotidases CD39 and CD73, whose expression in CD4(+) T cells has been associated with natural regulatory T cells (nTregs). We here show that CD73 expression on activated murine CD4(+) T cells is induced by TGF-ß independently of Foxp3 expression, operates at the transcriptional level and translates into gain of functional capacity to generate adenosine. In the presence of AMP, CD73 induced by TGF-ß generates adenosine able to suppress proliferation of activated CD4(+) T cells in vitro. These effects are contextual and opposed by proinflammatory cytokines. CD73 is also upregulated by TGF-ß in CD8(+) T cells, DCs and macrophages, so providing an amplification mechanism for adenosine generation in tissue microenvironments. Together, these findings expose a novel anti-inflammatory role for TGF-ß.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Mediadores da Inflamação , Leucócitos/metabolismo , Ativação Linfocitária , Fator de Crescimento Transformador beta/metabolismo , 5'-Nucleotidase/biossíntese , Monofosfato de Adenosina/metabolismo , Animais , Antígenos CD/biossíntese , Antígenos CD/metabolismo , Antígenos de Superfície , Apirase/biossíntese , Apirase/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/química , Proliferação de Células , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/química , Fatores de Transcrição Forkhead/biossíntese , Macrófagos/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/imunologia
5.
Proc Natl Acad Sci U S A ; 106(29): 12055-60, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19567830

RESUMO

Infectious tolerance describes the process of CD4(+) regulatory T cells (Tregs) converting naïve T cells to become additional Tregs. We show that antigen-specific Tregs induce, within skin grafts and dendritic cells, the expression of enzymes that consume at least 5 different essential amino acids (EAAs). T cells fail to proliferate in response to antigen when any 1, or more, of these EAAs are limiting, which is associated with a reduced mammalian target of rapamycin (mTOR) signaling. Inhibition of the mTOR pathway by limiting EAAs, or by specific inhibitors, induces the Treg-specific transcription factor forkhead box P3, which depends on both T cell receptor activation and synergy with TGF-beta.


Assuntos
Aminoácidos Essenciais/metabolismo , Tolerância Imunológica/imunologia , Proteínas Quinases/metabolismo , Transdução de Sinais/imunologia , Transferência Adotiva , Aminoácidos Essenciais/deficiência , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Epitopos/imunologia , Fatores de Transcrição Forkhead/metabolismo , Tolerância Imunológica/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Transplante de Pele/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/enzimologia , Linfócitos T Reguladores/imunologia , Serina-Treonina Quinases TOR , Fator de Crescimento Transformador beta/metabolismo
6.
Eur J Immunol ; 40(6): 1728-37, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20373289

RESUMO

Pharmacological modulation is known to temper the immune capacity of DC, enhancing the notion that modulated Ag-bearing DC might be used therapeutically to induce tolerance. We have investigated phenotypic features shared by such DC, and queried their potential to tolerize in different settings. Immature, IL-10, TGF-beta and 1alpha,25-dihydroxyvitamin D(3)-modulated BMDC all induced tolerance to male skin in female TCR transgenic A1.RAG mice, and the modulated DC also tolerized after exposure to the TLR4-ligand LPS. Transcript profiling revealed that this was achieved despite retaining much of the normal LPS-maturation response. No shared tolerance-associated transcripts could be identified. Equivalent BMDC could not tolerize in Marilyn TCR-transgenic mice. Simultaneous presentation of both A1.RAG and Marilyn peptide-Ag (Dby-H2E(k) and Dby-H2A(b)) on immature (C57BL/6JxCBA/Ca) F1 BMDC also only achieved tolerance in A1.RAG mice. Both strains registered Ag, but Foxp3(+) Treg were only induced in A1.RAG mice. In contrast, Marilyn T cells showed greater proliferation and an inflammatory bias, in response to Ag presented by immature F1 BMDC in vitro. In summary, while pharmacological agents can skew DC to reinforce their immature tolerogenic phenotype, the outcome of presentation is ultimately an integrated response including T-cell-intrinsic components that can over-ride for immune activation.


Assuntos
Células Dendríticas/imunologia , Tolerância Imunológica/imunologia , Animais , Apresentação de Antígeno/imunologia , Separação Celular , Feminino , Citometria de Fluxo , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia
7.
Stem Cells ; 28(10): 1905-14, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20737577

RESUMO

We have previously reported that ESC-derived tissues are subject to some level of immune privilege, which might facilitate induction of immune tolerance. Herein, we further demonstrate that fully allogeneic ESC-derived tissues are accepted with a regimen of coreceptor blockade even in recipients known to be relatively resistant to such a tolerizing protocol. Moreover, ESC-derived tissues could be spontaneously accepted across a class I major histocompatibility complex disparity. We further show that CD4(+)FoxP3(+) regulatory T cells (Treg) appear to be essential for this natural "privileged" state as their ablation with an anti-CD25 mAb results in rejection of ESC-derived tissue. This same treatment exposes activation of macrophages and effector CD8(+) T cells, suggesting that these cells are subject to regulatory T cell control. Thus, spontaneous acceptance of ESC-derived tissues mimics the acquired immune privilege induced by coreceptor blockade and is determined by Treg-mediated suppression.


Assuntos
Células-Tronco Embrionárias/citologia , Complexo Principal de Histocompatibilidade/imunologia , Linfócitos T Reguladores/imunologia , Tolerância ao Transplante/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Linfócitos T Reguladores/metabolismo , Transplante Homólogo/imunologia
8.
J Immunol ; 183(7): 4197-204, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19752228

RESUMO

In the aftermath of thymic negative selection, natural and adaptive regulatory T cells (Tregs) must acknowledge peripheral, "danger-free" self-Ag to ensure their sustained activity. In this paper, we show that natural and adaptive Tregs or T cells transduced with cDNA for Foxp3, just like Th1 cells, express members of the MS4A family of transmembrane molecules. Naive T cells transduced with MS4A4B become able to respond to lower levels of Ag. Using two family members, MS4A4B and MS4A6B, as baits in a yeast split-ubiquitin Treg library screen, we demonstrate their interaction with each other and with GITR, Orai1, and other surface receptors. Interaction of 4B with GITR augments GITR signaling and T cell IL-2 production in response to triggering with GITR ligand or anti-GITR Abs. This interaction provides a mechanism whereby MS4A family members, through lateral coassociation with costimulatory molecules, may amplify Ag signals. We propose that T cells preoccupied with immune defense use this MS4A family to enhance sensitivity to extrinsic Ag stimulation, ensuring its elimination, while Tregs use these adaptors to allow low level Ag signals to sustain regulatory function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Ativação Linfocitária/imunologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Receptores de Fator de Crescimento Neural/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Sequência de Aminoácidos , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Perfilação da Expressão Gênica , Proteína Relacionada a TNFR Induzida por Glucocorticoide , Humanos , Ativação Linfocitária/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Fator de Crescimento Neural/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Regulação para Cima/genética , Regulação para Cima/imunologia
9.
J Exp Med ; 195(12): 1641-6, 2002 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-12070291

RESUMO

Induction of transplantation tolerance with certain therapeutic nondepleting monoclonal antibodies can lead to a robust state of peripheral "dominant" tolerance. Regulatory CD4+ T cells, which mediate this form of "dominant" tolerance, can be isolated from spleens of tolerant animals. To determine whether there were any extra-lymphoid sites that might harbor regulatory T cells we sought their presence in tolerated skin allografts and in normal skin. When tolerated skin grafts are retransplanted onto T cell-depleted hosts, graft-infiltrating T cells exit the graft and recolonize the new host. These colonizing T cells can be shown to contain members with regulatory function, as they can prevent nontolerant lymphocytes from rejecting fresh skin allografts, without hindrance of rejection of third party skin. Our results suggest that T cell suppression of graft rejection is an active process that operates beyond secondary lymphoid tissue, and involves the persistent presence of regulatory T cells at the site of the tolerated transplant.


Assuntos
Tolerância Imunológica , Transplante de Pele/imunologia , Linfócitos T/imunologia , Animais , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Linfócitos T/citologia , Transplante Homólogo
10.
Proc Natl Acad Sci U S A ; 104(52): 20920-5, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18093946

RESUMO

Although human embryonic stem (ES) cells may one day provide a renewable source of tissues for cell replacement therapy (CRT), histoincompatibility remains a significant barrier to their clinical application. Current estimates suggest that surprisingly few cell lines may be required to facilitate rudimentary tissue matching. Nevertheless, the degree of disparity between donor and recipient that may prove acceptable, and the extent of matching that is therefore required, remain unknown. To address this issue using a mouse model of CRT, we have derived a panel of ES cell lines that differ from CBA/Ca recipients at defined genetic loci. Here, we show that even expression of minor histocompatibility (mH) antigens is sufficient to provoke acute rejection of tissues differentiated from ES cells. Nevertheless, despite their immunogenicity in vivo, transplantation tolerance may be readily established by using minimal host conditioning with nondepleting monoclonal antibodies specific for the T cell coreceptors, CD4 and CD8. This propensity for tolerance could be attributed to the paucity of professional antigen-presenting cells and the expression of transforming growth factor (TGF)-beta(2). Together, these factors contribute to a state of acquired immune privilege that favors the polarization of infiltrating T cells toward a regulatory phenotype. Although the natural privileged status of ES cell-derived tissues is, therefore, insufficient to overcome even mH barriers, our findings suggest it may be harnessed effectively for the induction of dominant tolerance with minimal therapeutic intervention.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/imunologia , Tolerância Imunológica , Animais , Anticorpos Monoclonais/química , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Sobrevivência de Enxerto , Humanos , Sistema Imunitário , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor/química , Modelos Biológicos , Pele/metabolismo , Fator de Crescimento Transformador beta2/metabolismo
11.
Front Immunol ; 9: 1381, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29967616

RESUMO

During an immune response, naïve CD4+ T cells proliferate and generate a range of effector, memory, and regulatory T cell subsets, but how these processes are co-ordinated remains unclear. A traditional model suggests that memory cells use mitochondrial respiration and are survivors from a pool of previously proliferating and glycolytic, but short-lived effector cells. A more recent model proposes a binary commitment to either a memory or effector cell lineage during a first, asymmetric cell division, with each lineage able to undergo subsequent proliferation and differentiation. We used improved fixation and staining methods with imaging flow cytometry in an optimized in vitro system that indicates a third model. We found that cell fates result from stochastic decisions that depend on GITR co-stimulation and which take place before any cell division. Effector cell commitment is associated with mTORC2 signaling leading to uropodium development, while developing memory cells lose mitochondria, have a nuclear localization of NFκB and depend on TGFß for their survival. Induced, T helper subsets and foxp3+ regulatory T cells were found in both the effector and memory cell lineages. This in vitro model of T cell differentiation is well suited to testing how manipulation of cytokine, nutrient, and other components of the microenvironment might be exploited for therapeutic purposes.

12.
Curr Opin Immunol ; 15(5): 499-506, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14499256

RESUMO

Long-term allograft survival in the absence of continuous immunosuppression can be induced following a short treatment of nondepleting antibodies, such as those that target CD4 or CD154 (CD40 ligand). It is now established that this may involve dominant tolerance mechanisms that are maintained by CD4+ regulatory T cells present within the lymphoid tissue and the tolerated graft. The phenotype of these cells, their relationship to CD4+CD25+ T cells, and the mechanism of action are still controversial.


Assuntos
Tolerância ao Transplante , Animais , Linfócitos T CD4-Positivos/imunologia , Ligante de CD40/imunologia , Sobrevivência de Enxerto/imunologia , Camundongos , Modelos Imunológicos , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia
13.
Methods Mol Biol ; 380: 225-51, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17876097

RESUMO

Investigations into the mechanisms of immunological tolerance are currently hindered by a paucity of convenient markers, both for the identification and isolation of tolerant cell types and for monitoring the establishment of tolerance in in vivo models. Although high-affinity autoreactive T cells are deleted in the thymus during the establishment of central tolerance, escaping autoreactive cells require modulation in the periphery. Dendritic cells (DC) and regulatory T cells (Treg) are both implicated in the establishment and maintenance of peripheral tolerance, although specific interactions and mechanisms remain to be established. The serial analysis of gene expression (SAGE) approach to transcript profiling offers potential, not only for new insight into tolerogenic mechanisms, unbiased by current dogma, but also for the identification of novel molecular markers of tolerance. SAGE provides both quantitative and qualitative information on transcripts sampled on the basis of frequency of occurrence in the initial mRNA pool. This information is generated in the form of electronic databases that accumulate as a permanent resource and confer on SAGE the ability to readily compare across wide datasets. This offers particular potential when attempting to correlate gene expression with functional phenotype. By comparing variously generated functionally distinct/related immune populations, such as effector T cells and either natural, CD4+CD25+, or adaptive, Tr1, Tregs and/or immune and tolerance prone DC, it should be possible, using SAGE, to identify both individual genes and also signatures of genes associated with protolerogenic rather than immunogenic phenotypes.


Assuntos
Perfilação da Expressão Gênica/métodos , Tolerância Imunológica/imunologia , Animais , Células Dendríticas/imunologia , Humanos , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Timo/citologia , Timo/imunologia
14.
BMC Immunol ; 7: 9, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16638128

RESUMO

BACKGROUND: A major challenge in the application of marrow transplantation as a route to immunological tolerance of a transplanted organ is to achieve hematopoietic stem cell (HSC) engraftment with minimal myelosuppressive treatments. RESULTS: We here describe a combined antibody protocol which can achieve long-term engraftment with clinically relevant doses of MHC-mismatched bone marrow, without the need for myelosuppressive drugs. Although not universally applicable in all strains, we achieved reliable engraftment in permissive strains with a two-stage strategy: involving first, treatment with anti-CD8 and anti-CD4 in advance of transplantation; and second, treatment with antibodies targeting CD4, CD8 and CD40L (CD154) at the time of marrow transplantation. Long-term mixed chimerism through co-receptor and co-stimulation blockade facilitated tolerance to donor-type skin grafts, without any evidence of donor-antigen driven regulatory T cells. CONCLUSION: We conclude that antibodies targeting co-receptor and co-stimulatory molecules synergise to enable mixed hematopoietic chimerism and central tolerance, showing that neither cytoreductive conditioning nor 'megadoses' of donor bone marrow are required for donor HSC to engraft in permissive strains.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD4/imunologia , Ligante de CD40/imunologia , Antígenos CD8/imunologia , Tolerância Imunológica , Terapia de Imunossupressão/métodos , Ativação Linfocitária/efeitos dos fármacos , Quimera por Radiação/imunologia , Condicionamento Pré-Transplante , Animais , Animais Congênicos , Anticorpos Monoclonais/imunologia , Transplante de Medula Óssea/imunologia , Cruzamentos Genéticos , Sinergismo Farmacológico , Feminino , Sobrevivência de Enxerto , Antígenos H-2/imunologia , Histocompatibilidade , Ativação Linfocitária/imunologia , Depleção Linfocítica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Transplante de Pele/imunologia , Organismos Livres de Patógenos Específicos , Subpopulações de Linfócitos T/imunologia , Transplante Homólogo
15.
Front Immunol ; 7: 124, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148253

RESUMO

Regulatory T cells expressing the transcription factor Foxp3 require acquisition of a specific hypomethylation pattern to ensure optimal functional commitment, limited lineage plasticity, and long-term maintenance of tolerance. A better understanding of the molecular mechanisms involved in the generation of these epigenetic changes in vivo will contribute to the clinical exploitation of Foxp3(+) Treg. Here, we show that both in vitro and in vivo generated antigen-specific Foxp3(+) Treg can acquire Treg-specific epigenetic characteristics and prevent skin graft rejection in an animal model.

16.
Int Immunopharmacol ; 5(1): 1-5, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15589453

RESUMO

Immunosuppressive agents are the mainstay treatment for patients that have received organ grafts and are becoming increasingly important in the treatment of autoimmune diseases. There are, however, many problems with both the concept and reality of long-term immunosuppression as a therapeutic modality, both in terms of the nonspecific toxicity of the drugs that are currently available and the increased risk of infections and tumours arising from global suppression of the immune system. This special issue of International Immunopharmacology includes papers submitted at the 6th International Conference on New Trends in Immunosuppression that was held in Salzburg during February 2004 that show some of the recent advances, particularly in the field of transplantation tolerance, and demonstrate the complexity of issues limiting our application of experimental developments into effective clinical strategies.


Assuntos
Terapia de Imunossupressão/tendências , Tolerância ao Transplante , Animais , Humanos , Linfócitos T/imunologia
17.
Immunol Res ; 28(3): 181-91, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14713713

RESUMO

A short-treatment with nondepleting antibodies, such as those targeting CD4 or CD154 (CD40 ligand), allows long-term graft survival without the need for continuous immunosuppression. This state of immune tolerance is maintained by regulatory CD4+ T cells present within both the lymphoid tissue and the tolerated graft. The nature of such regulatory T cells, their relationship to CD4+CD25+ T cells, and their mode of action have all been the subjects of much attention recently. Here, we review recent progress on understanding the nature, specificity, and mechanisms of action of T cells mediating dominant tolerance brought about by antibody therapy.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Tolerância Imunológica , Imunologia de Transplantes , Animais , Linfócitos T CD4-Positivos/imunologia , Sobrevivência de Enxerto/imunologia , Terapia de Imunossupressão , Camundongos , Ratos , Receptores de Interleucina-2/metabolismo , Subpopulações de Linfócitos T/imunologia , Transplante Homólogo
18.
Artigo em Inglês | MEDLINE | ID: mdl-23732858

RESUMO

Transplantation tolerance is a continuing therapeutic goal, and it is now clear that a subpopulation of T cells with regulatory activity (Treg) that express the transcription factor foxp3 are crucial to this aspiration. Although reprogramming of the immune system to donor-specific transplantation tolerance can be readily achieved in adult mouse models, it has yet to be successfully translated in human clinical practice. This requires that we understand the fundamental mechanisms by which donor antigen-specific Treg are induced and function to maintain tolerance, so that we can target therapies to enhance rather than impede these regulatory processes. Our current understanding is that Treg act via numerous molecular mechanisms, and critical underlying components such as mTOR inhibition, are only now emerging.


Assuntos
Linfócitos T Reguladores/imunologia , Tolerância ao Transplante/imunologia , Animais , Autoimunidade , Biomarcadores , Epigenômica , Fatores de Transcrição Forkhead/fisiologia , Rejeição de Enxerto/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Tolerância Imunológica/fisiologia , Imunidade Heteróloga/fisiologia , Fatores de Transcrição/metabolismo
19.
Front Immunol ; 2: 9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22566800

RESUMO

A major limitation to the translation of tolerogenic therapies to clinical transplantation is a lack of biomarkers that can be used as surrogate measures for predicting the successful induction of immune tolerance which would allow for the safe withdrawal of immunosuppression. We have used three different mouse models of donor specific tolerance to skin grafts together with quantitative RT-PCR to search for potential biomarkers of tolerance using criteria based on the presence or activity of regulatory T cells and antigen presenting cells (APCs) within grafts or lymphoid organs. We find that significant differences in gene expression between tolerated and rejecting grafts are observed primarily within the grafted skin and not systemically or in the draining lymph node. The pattern of gene expression within long-term surviving tolerated grafts appear very similar to syngeneic grafts, with both having low levels of T cell and APC infiltration and a bias toward relative over-expression of "regulatory-associated" genes, while allografts destined for rejection show an overall increase in both "regulatory" and "effector" cell associated transcripts. We also, however, find an increase in a large number of regulatory genes, of both innate and T cell origin, even after grafting syngeneic skin. Taken together, these findings suggest that there may be no tissue biomarkers uniquely able to predict donor antigen specific tolerance per se, but that patterns of gene expression within tolerated grafts may be similar to those found in self tissues recovering from an inflammatory insult.

20.
Curr Opin Immunol ; 23(5): 660-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21839624

RESUMO

TGF-ß is a cytokine required for the induction and maintenance of transplantation tolerance in animal models. TGF-ß mediates anti-inflammatory effects by acting on many immune cell-types. Central for transplantation tolerance is the role for TGF-ß in the induction of Foxp3 and regulatory capacity in CD4(+) T cells. Recently, however, the general anti-inflammatory role of TGF-ß in CD4(+) T cell polarization was questioned by the discovery that, in the presence of inflammatory cytokines such as IL-6 or IL-1, TGF-ß drives the differentiation of Th17 cells associated with transplant rejection. A better understanding of the factors determining TGF-ß production and activation, Foxp3 induction and Treg stability is vital for the development of tolerogenic strategies in transplantation.


Assuntos
Imunidade Adaptativa , Fatores de Transcrição Forkhead/imunologia , Rejeição de Enxerto/prevenção & controle , Transplante de Órgãos , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta , Tolerância ao Transplante , Animais , Antígenos CD/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Fatores de Transcrição Forkhead/genética , Rejeição de Enxerto/imunologia , Humanos , Interleucina-1/imunologia , Interleucina-6/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/citologia , Células Th17/citologia , Fator de Crescimento Transformador beta/deficiência , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa