Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293118

RESUMO

Radiotherapy (RT) is a relatively safe and established treatment for cancer, where the goal is to kill tumoral cells with the lowest toxicity to healthy tissues. Using it for disorders involving cell loss is counterintuitive. However, ionizing radiation has a hormetic nature: it can have deleterious or beneficial effects depending on how it is applied. Current evidence indicates that radiation could be a promising treatment for neurodegenerative disorders involving protein misfolding and amyloidogenesis, such as Alzheimer's or Parkinson's diseases. Low-dose RT can trigger antioxidant, anti-inflammatory and tissue regeneration responses. RT has been used to treat peripheral amyloidosis, which is very similar to other neurodegenerative disorders from a molecular perspective. Ionizing radiation prevents amyloid formation and other hallmarks in cell cultures, animal models and pilot clinical trials. Although some hypotheses have been formulated, the mechanism of action of RT on systemic amyloid deposits is still unclear, and uncertainty remains regarding its impact in the central nervous system. However, new RT modalities such as low-dose RT, FLASH, proton therapy or nanoparticle-enhanced RT could increase biological effects while reducing toxicity. Current evidence indicates that the potential of RT to treat neurodegeneration should be further explored.


Assuntos
Amiloidose , Doenças Neurodegenerativas , Animais , Antioxidantes/uso terapêutico , Amiloidose/metabolismo , Amiloide/metabolismo , Doenças Neurodegenerativas/metabolismo , Sistema Nervoso Central/metabolismo
2.
Rep Pract Oncol Radiother ; 21(3): 266-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27601960

RESUMO

AIM: To evaluate the deviations in prostatectomy patients treated with IMRT in order to calculate appropriate margins to create the PTV. BACKGROUND: Defining inappropriate margins can lead to underdosing in target volumes and also overdosing in healthy tissues, increasing morbidity. MATERIAL AND METHODS: 223 CBCT images used for alignment with the CT planning scan based on bony anatomy were analyzed in 12 patients treated with IMRT following prostatectomy. Shifts of CBCT images were recorded in three directions to calculate the required margin to create PTV. RESULTS AND DISCUSSION: The mean and standard deviation (SD) values in millimetres were -0.05 ± 1.35 in the LR direction, -0.03 ± 0.65 in the SI direction and -0.02 ± 2.05 the AP direction. The systematic error measured in the LR, SI and AP direction were 1.35 mm, 0.65 mm, and 2.05 mm with a random error of 2.07 mm; 1.45 mm and 3.16 mm, resulting in a PTV margin of 4.82 mm; 2.64 mm, and 7.33 mm, respectively. CONCLUSION: With IGRT we suggest a margin of 5 mm, 3 mm and 8 mm in the LR, SI and AP direction, respectively, to PTV1 and PTV2. Therefore, this study supports an anisotropic margin expansion to the PTV being the largest expansion in the AP direction and lower in SI.

3.
Radiol Phys Technol ; 10(3): 274-278, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28324390

RESUMO

This study aimed to assess the administered dose based on portal imaging in craniospinal pediatric irradiation by evaluating cases in which portal images did or did not account for the total administered dose. We also intended to calculate the mean increase in total administered dose. Data were collected from General University Hospital Gregorio Marañón; we evaluated the total dose administered, total dose planned, number of portal images per treatment and corresponding monitor units of two different groups: one in which the dose from portal images is deducted from the total administered dose (D), and another in which it was not (N). We used descriptive statistics to analyze the collected data, including the mean and respective standard deviation. We used the Shapiro-Wilk and Spearman rank correlation coefficient tests and estimated the linear regression coefficients. Patients in group D received a mean dose of 29.00 ± 10.28 cGy based on the verification portal images, a quantity that was deducted from the planned dose to match the total administered dose. Patients in group N received a mean dose of 41.50 ± 30.53 cGy, which was not deducted from the planned dose, evidencing a mean increase of 41.50 ± 30.55 cGy over the total administered dose. The acquisition of the set-up verification portal images, without their inclusion in the total administered dose, reflects an average increase in total dose for craniospinal irradiation of pediatric patients. Subtraction of the monitor units used to acquire the verification images is recommended.


Assuntos
Radiação Cranioespinal , Doses de Radiação , Radioterapia Guiada por Imagem , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/radioterapia , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Meduloblastoma/diagnóstico por imagem , Meduloblastoma/radioterapia , Dosagem Radioterapêutica , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa