Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Public Health ; 21(1): 2211, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863138

RESUMO

BACKGROUND: Household air pollution (HAP) from cooking with solid fuels has adverse health effects. REACCTING (Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana) was a randomized cookstove intervention study that aimed to determine the effects of two types of "improved" biomass cookstoves on health using self-reported health symptoms and biomarkers of systemic inflammation from dried blood spots for female adult cooks and children, and anthropometric growth measures for children only. METHODS: Two hundred rural households were randomized into four different cookstove groups. Surveys and health measurements were conducted at four time points over a two-year period. Chi-square tests were conducted to determine differences in self-reported health outcomes. Linear mixed models were used to assess the effect of the stoves on inflammation biomarkers in adults and children, and to assess the z-score deviance for the anthropometric data for children. RESULTS: We find some evidence that two biomarkers of oxidative stress and inflammation, serum amyloid A and C-reactive protein, decreased among adult primary cooks in the intervention groups relative to the control group. We do not find detectable impacts for any of the anthropometry variables or self-reported health. CONCLUSIONS: Overall, we conclude that the REACCTING intervention did not substantially improve the health outcomes examined here, likely due to continued use of traditional stoves, lack of evidence of particulate matter emissions reductions from "improved" stoves, and mixed results for HAP exposure reductions. CLINICAL TRIAL REGISTRY: ClinicalTrials.gov (National Institutes of Health); Trial Registration Number: NCT04633135 ; Date of Registration: 11 November 2020 - Retrospectively registered. URL: https://clinicaltrials.gov/ct2/show/NCT04633135?term=NCT04633135&draw=2&rank=1.


Assuntos
Poluição do Ar em Ambientes Fechados , Utensílios Domésticos , Adulto , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Biomassa , Criança , Culinária/métodos , Feminino , Gana/epidemiologia , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise
2.
Environ Sci Technol ; 53(11): 6392-6401, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31070029

RESUMO

Diffuse emission sources outside of kitchen areas are poorly understood, and measurements of their emission factors (EFs) are sparse for regions of sub-Saharan Africa. Thirty-one in-field emission measurements were taken in northern Ghana from combustion sources common to rural regions worldwide. Sources sampled included commercial cooking, trash burning, kerosene lanterns, and diesel generators. EFs were calculated for carbon monoxide (CO), carbon dioxide (CO2), as well as carbonaceous particulate matter, specifically elemental carbon (EC) and organic carbon (OC). EC and OC emissions were measured from kerosene lighting events (EFEC = 25.1 g/kg-fuel SD = 25.7, EFOC = 9.5 g/kg-fuel SD = 10.0). OC emissions from trash burning events were large and highly variable (EFOC = 38.9 g/kg-fuel SD = 30.5). Combining our results with other recent in-field emission factors for rural Ghana, we explored updated emission estimates for Ghana using a region specific emissions inventory. Large differences are calculated for all updated source emissions, showing a 96% increase in OC and 78% decrease in EC compared to prior estimates for Ghana's emissions. Differences for carbon monoxide were small when averaged across all updated source types (-1%), though the household wood use and trash burning categories individually show large differences.


Assuntos
Poluentes Atmosféricos , Utensílios Domésticos , Carbono , Monitoramento Ambiental , Gana , Material Particulado
3.
BMC Public Health ; 18(1): 1209, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373560

RESUMO

BACKGROUND: Despite their potential health and social benefits, adoption and use of improved cookstoves has been low throughout much of the world. Explanations for low adoption rates of these technologies include prices that are not affordable for the target populations, limited opportunities for households to learn about cookstoves through peers, and perceptions that these technologies are not appropriate for local cooking needs. The P3 project employs a novel experimental design to explore each of these factors and their interactive effects on cookstove demand, adoption, use and exposure outcomes. METHODS: The P3 study is being conducted in the Kassena-Nankana Districts of Northern Ghana. Leveraging an earlier improved cookstove study that was conducted in this area, the central design of the P3 biomass stove experiment involves offering stoves at randomly varying prices to peers and non-peers of households that had previously received stoves for free. Using household surveys, electronic stove use monitors, and low-cost, portable monitoring equipment, we measure how prices and peers' experience affect perceptions of stove quality, the decision to purchase a stove, use of improved and traditional stoves over time, and personal exposure to air pollutants from the stoves. DISCUSSION: The challenges that public health and development communities have faced in spreading adoption of potentially welfare-enhancing technologies, like improved cookstoves, have highlighted the need for interdisciplinary, multisectoral approaches. The design of the P3 project draws on economic theory, public health practice, engineering, and environmental sciences, to more fully grasp the drivers and barriers to expanding access to and uptake of cleaner stoves. Our partnership between academic institutions, in the US and Ghana, and a local environmental non-governmental organization creates unique opportunities to disseminate and scale up lessons learned. TRIAL REGISTRATION: ClinicalTrials.gov NCT03617952 7/31/18 (Retrospectively Registered).


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Comércio , Culinária/instrumentação , Influência dos Pares , Percepção , Adolescente , Adulto , Biomassa , Culinária/economia , Desenho de Equipamento , Feminino , Gana , Humanos , Masculino , Pessoa de Meia-Idade , Projetos de Pesquisa , Adulto Jovem
4.
Environ Sci Technol ; 51(21): 12508-12517, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29058409

RESUMO

Household cooking using solid biomass fuels is a major global health and environmental concern. As part of the Research on Emissions Air quality Climate and Cooking Technologies in Northern Ghana study, we conducted 75 in-field uncontrolled cooking tests designed to assess emissions and efficiency of the Gyapa woodstove, Philips HD4012, threestone fire and coalpot (local charcoal stove). Emission factors (EFs) were calculated for carbon monoxide (CO), carbon dioxide (CO2), and particulate matter (PM). Moreover, modified combustion (MCE), heat transfer (HTE) and overall thermal efficiencies (OTE) were calculated across a variety of fuel, stove and meal type combinations. Mixed effect models suggest that compared to traditional stove/fuel combinations, the Philips burning wood or charcoal showed significant fuel and energy based EF differences for CO, but no significant PM changes with wood fuel. MCEs were significantly higher for Philips wood and charcoal-burning stoves compared to the threestone fire and coalpot. The Gyapa emitted significantly higher ratios of elemental to organic carbon. Fuel moisture, firepower and MCE fluctuation effects on stove performance were investigated with mixed findings. Results show agreement with other in-field findings and discrepancies with some lab-based findings, with important implications for estimated health and air quality impacts.


Assuntos
Poluentes Atmosféricos , Culinária , Utensílios Domésticos , Poluição do Ar em Ambientes Fechados , Gana , Material Particulado , Madeira
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa