Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826408

RESUMO

Magnetic resonance angiography (MRA) performed at ultra-high magnetic field provides a unique opportunity to study the arteries of the living human brain at the mesoscopic level. From this, we can gain new insights into the brain's blood supply and vascular disease affecting small vessels. However, for quantitative characterization and precise representation of human angioarchitecture to, for example, inform blood-flow simulations, detailed segmentations of the smallest vessels are required. Given the success of deep learning-based methods in many segmentation tasks, we here explore their application to high-resolution MRA data, and address the difficulty of obtaining large data sets of correctly and comprehensively labelled data. We introduce VesselBoost, a vessel segmentation package, which utilizes deep learning and imperfect training labels for accurate vasculature segmentation. Combined with an innovative data augmentation technique, which leverages the resemblance of vascular structures, VesselBoost enables detailed vascular segmentations.

2.
Med Image Anal ; 84: 102700, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529002

RESUMO

Deep learning based Quantitative Susceptibility Mapping (QSM) has shown great potential in recent years, obtaining similar results to established non-learning approaches. Many current deep learning approaches are not data consistent, require in vivo training data or solve the QSM problem in consecutive steps resulting in the propagation of errors. Here we aim to overcome these limitations and developed a framework to solve the QSM processing steps jointly. We developed a new hybrid training data generation method that enables the end-to-end training for solving background field correction and dipole inversion in a data-consistent fashion using a variational network that combines the QSM model term and a learned regularizer. We demonstrate that NeXtQSM overcomes the limitations of previous deep learning methods. NeXtQSM offers a new deep learning based pipeline for computing quantitative susceptibility maps that integrates each processing step into the training and provides results that are robust and fast.


Assuntos
Encéfalo , Aprendizado Profundo , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Algoritmos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa