Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Evol Dev ; 17(3): 198-219, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25963198

RESUMO

Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Genética , Animais , Biologia do Desenvolvimento/educação , Biologia do Desenvolvimento/tendências , Redes Reguladoras de Genes , Genética/educação , Genética/tendências , Humanos
2.
CBE Life Sci Educ ; 22(2): ar25, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058442

RESUMO

In-person undergraduate research experiences (UREs) promote students' integration into careers in life science research. In 2020, the COVID-19 pandemic prompted institutions hosting summer URE programs to offer them remotely, raising questions about whether undergraduates who participate in remote research can experience scientific integration and whether they might perceive doing research less favorably (i.e., not beneficial or too costly). To address these questions, we examined indicators of scientific integration and perceptions of the benefits and costs of doing research among students who participated in remote life science URE programs in Summer 2020. We found that students experienced gains in scientific self-efficacy pre- to post-URE, similar to results reported for in-person UREs. We also found that students experienced gains in scientific identity, graduate and career intentions, and perceptions of the benefits of doing research only if they started their remote UREs at lower levels on these variables. Collectively, students did not change in their perceptions of the costs of doing research despite the challenges of working remotely. Yet students who started with low cost perceptions increased in these perceptions. These findings indicate that remote UREs can support students' self-efficacy development, but may otherwise be limited in their potential to promote scientific integration.


Assuntos
COVID-19 , Estudantes , Humanos , Pandemias
3.
J Hered ; 103(4): 533-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22577191

RESUMO

The seagrass Zostera marina is widely distributed in coastal regions throughout much of the northern hemisphere, forms the foundation of an important ecological habitat, and is suffering population declines. Studies in the Atlantic and Pacific oceans indicate that the degree of population genetic differentiation is location dependent. San Francisco Bay, California, USA, is a high-current, high-wind environment where rafting of seed-bearing shoots has the potential to enhance genetic connectivity among Z. marina populations. We tested Z. marina from six locations, including one annual population, within the bay to assess population differentiation and to compare levels of within-population genetic diversity. Using 7 microsatellite loci, we found significant differentiation among all populations. The annual population had significantly higher clonal diversity than the others but showed no detectible differences in heterozygosity or allelic richness. There appears to be sufficient input of genetic variation through sexual reproduction or immigration into the perennial populations to prevent significant declines in the number and frequency of alleles. In additional depth comparisons, we found differentiation among deep and shallow portions in 1 of 3 beds evaluated. Genetic drift, sweepstakes recruitment, dispersal limitation, and possibly natural selection may have combined to produce genetic differentiation over a spatial scale of 3-30 km in Z. marina. This implies that the scale of genetic differentiation may be smaller than expected for seagrasses in other locations too. We suggest that populations in close proximity may not be interchangeable for use as restoration material.


Assuntos
Variação Genética , Zosteraceae/genética , Ecossistema , Deriva Genética , Genética Populacional , Repetições de Microssatélites , Oceano Pacífico , São Francisco
4.
bioRxiv ; 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36597523

RESUMO

In 2020, many students lost summer opportunities due to the COVID-19 pandemic. We wanted to offer students an opportunity to learn computational skills and be part of a community while stuck at home. Because the pandemic created an unexpected research and academic situation, it was unclear how to best support students to learn and build community online. We used lessons learned from literature and our own experience to design, run and test an online program for students called the Science Coding Immersion Program (SCIP). In our program, students worked in teams for 8 hours a week, with one participant as the team leader and Zoom host. Teams worked on an online R or Python class at their own pace with support on Slack from the organizing team. For motivation and career advice, we hosted a weekly webinar with guest speakers. We used pre- and post-program surveys to determine how different aspects of the program impacted students. We were able to recruit a large and diverse group of participants who were happy with the program, found community in their team, and improved their coding confidence. We hope that our work will inspire others to start their own version of SCIP.

5.
CBE Life Sci Educ ; 21(1): ar1, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34978923

RESUMO

The COVID-19 pandemic shut down undergraduate research programs across the United States. A group of 23 colleges, universities, and research institutes hosted remote undergraduate research programs in the life sciences during Summer 2020. Given the unprecedented offering of remote programs, we carried out a study to describe and evaluate them. Using structured templates, we documented how programs were designed and implemented, including who participated. Through focus groups and surveys, we identified programmatic strengths and shortcomings as well as recommendations for improvements from students' perspectives. Strengths included the quality of mentorship, opportunities for learning and professional development, and a feeling of connection with a larger community. Weaknesses included limited cohort building, challenges with insufficient structure, and issues with technology. Although all programs had one or more activities related to diversity, equity, inclusion, and justice, these topics were largely absent from student reports even though programs coincided with a peak in national consciousness about racial inequities and structural racism. Our results provide evidence for designing remote Research Experiences for Undergraduates (REUs) that are experienced favorably by students. Our results also indicate that remote REUs are sufficiently positive to further investigate their affordances and constraints, including the potential to scale up offerings, with minimal concern about disenfranchising students.


Assuntos
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Estudantes , Racismo Sistêmico , Estados Unidos
6.
Ecol Evol ; 11(7): 3313-3331, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33841786

RESUMO

Temporal genetic studies of low-dispersing organisms are rare. Marine invertebrates lacking a planktonic larval stage are expected to have lower dispersal, low gene flow, and a higher potential for local adaptation than organisms with planktonic dispersal. Leptasterias is a genus of brooding sea stars containing several cryptic species complexes. Population genetic methods were used to resolve patterns of fine-scale population structure in central California Leptasterias species using three loci from nuclear and mitochondrial genomes. Historic samples (collected between 1897 and 1998) were compared to contemporary samples (collected between 2008 and 2014) to delineate changes in species distributions in space and time. Phylogenetic analysis of contemporary samples confirmed the presence of a bay-localized clade and revealed the presence of an additional bay-localized and previously undescribed clade of Leptasterias. Analysis of contemporary and historic samples indicates two clades are experiencing a constriction in their southern range limit and suggests a decrease in clade-specific abundance at sites at which they were once prevalent. Historic sampling revealed a dramatically different distribution of diversity along the California coastline compared to contemporary sampling and illustrates the importance of temporal genetic sampling in phylogeographic studies. These samples were collected prior to significant impacts of Sea Star Wasting Disease (SSWD) and represent an in-depth analysis of genetic structure over 117 years prior to the SSWD-associated mass die-off of Leptasterias.

7.
Sci Rep ; 11(1): 8351, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863944

RESUMO

Ascidians (Phylum Chordata, Class Ascidiacea) are a large group of invertebrates which occupy a central role in the ecology of marine benthic communities. Many ascidian species have become successfully introduced around the world via anthropogenic vectors. The botryllid ascidians (Order Stolidobranchia, Family Styelidae) are a group of 53 colonial species, several of which are widespread throughout temperate or tropical and subtropical waters. However, the systematics and biology of this group of ascidians is not well-understood. To provide a systematic framework for this group, we have constructed a well-resolved phylogenomic tree using 200 novel loci and 55 specimens. A Principal Components Analysis of all species described in the literature using 31 taxonomic characteristics revealed that some species occupy a unique morphological space and can be easily identified using characteristics of adult colonies. For other species, additional information such as larval or life history characteristics may be required for taxonomic discrimination. Molecular barcodes are critical for guiding the delineation of morphologically similar species in this group.


Assuntos
Filogenia , Urocordados/anatomia & histologia , Urocordados/genética , Animais , Código de Barras de DNA Taxonômico , Estágios do Ciclo de Vida , Biologia Marinha , Especificidade da Espécie , Clima Tropical , Urocordados/classificação , Urocordados/fisiologia
8.
PLoS One ; 15(8): e0238361, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866211

RESUMO

The San Francisco Bay outflow creates a tidally influenced low-salinity plume that affects adjacent coastal sites. In the study region, Anthopleura elegantissima (Cnidaria; Anthozoa) hosts a single symbiont, the dinoflagellate Breviolum muscatinei. Salinity, temperature, and aerial stress induce a bleaching response similar to corals where symbionts are expelled, causing further energetic stress. Using field observations of environmental conditions and symbiont abundance at sites on a gradient of exposure to estuarine outflow, along with a fully crossed multifactorial lab experiment, we tested for changes in symbiont abundance in response to various combinations of three stressors. Lab experiments were designed to mimic short term outflow events with low salinity, high temperature, and aerial exposure treatments. The lab aerial exposure treatment was a statistically significant factor in suppressing symbiont repopulation (ANOVA, p = .017). In the field, symbiont density decreased with increasing tidal height at the site closest to freshwater outflow (ANOVA, p = .007), suggesting that aerial exposure may affect symbiont density more than sea surface temperature and salinity. Unanticipated documentation of survival in 9 months of sand burial and subsequent repopulation of symbionts is reported as a six-month extension to past observations, exemplifying strong tolerance to environmental insult in this Cnidarian mutualism. The study of this symbiosis is useful in examining predicted changes in ocean conditions in tidepool communities and considering relative sources of stress.


Assuntos
Antozoários/fisiologia , Dinoflagellida/fisiologia , Anêmonas-do-Mar/fisiologia , Simbiose/fisiologia , Animais , Água Doce , Temperatura Alta , São Francisco , Temperatura
9.
PLoS One ; 14(11): e0225248, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31751376

RESUMO

Sea star wasting disease (SSWD) describes a suite of disease signs believed to have led to catastrophic die-offs in many asteroid species, beginning in 2013. While most studies have focused on large, easily visible sea stars with widely-dispersing larvae, less information is available on the effect of this disease outbreak on smaller sea star species, such as the six-armed sea star Leptasterias spp. Unlike many larger sea stars, Leptasterias brood non-feeding young instead of broadcast-spawning planktonic larvae. Limited dispersal and thus limited gene flow may make these sea stars more vulnerable to local selective pressures, such as disease outbreaks. Here, we examined Leptasterias populations at sites along the California coast and documented abundance changes coincident with recent Pacific coast SSWD in 2014. Detection of Leptasterias in central California declined, and Leptasterias were not detected at multiple sites clustered around the San Francisco Bay outflow in the most recent surveys. Additionally, we categorized disease signs in Leptasterias in the field and laboratory, which mirrored those seen in larger sea stars in both settings. Finally, we found that magnesium chloride (MgCl2) slowed the progression of physical deterioration related to SSWD when applied to sea stars in the laboratory, suggesting that MgCl2 may prolong the survival of diseased individuals.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/etiologia , Estrelas-do-Mar , Animais , California/epidemiologia , Ecossistema , Geografia , Fenótipo
10.
Ecol Evol ; 6(8): 2453-71, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27066231

RESUMO

Little is known about the number and rate of introductions into terrestrial and marine tropical regions, and if introduction patterns and processes differ from temperate latitudes. Botryllid ascidians (marine invertebrate chordates) are an interesting group to study such introduction differences because several congeners have established populations across latitudes. While temperate botryllid invasions have been repeatedly highlighted, the global spread of tropical Botrylloides nigrum (Herdman, 1886) has been largely ignored. We sampled B. nigrum from 16 worldwide warm water locations, including around the Panama Canal, one of the largest shipping hubs in the world and a possible introduction corridor. Using mitochondrial (COI) and nuclear (ANT) markers, we discovered a single species with low genetic divergence and diversity that has established in the Atlantic, Pacific, Indo-Pacific, and Mediterranean Oceans. The Atlantic Ocean contained the highest diversity and multilocus theta estimates and may be a source for introductions to other regions. A high frequency of one mitochondrial haplotype was detected in Pacific populations that may represent a recent introduction in this region. In comparison to temperate relatives, B. nigrum displayed lower (but similar to temperate Botrylloides violaceus) genetic divergence and diversity at both loci that may represent a more recent global spread or differences in introduction pressures in tropical regions. Additionally, chimeras (genetically distinct individuals sharing a single body) were detected in three populations by the mitochondrial locus and validated using cloning, and these individuals contained new haplotype diversity not detected in any other colonies.

11.
PLoS One ; 9(2): e89316, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586683

RESUMO

Eelgrass (Zostera marina) forms the foundation of an important shallow coastal community in protected estuaries and bays. Widespread population declines have stimulated restoration efforts, but these have often overlooked the importance of maintaining the evolutionary potential of restored populations by minimizing the reduction in genetic diversity that typically accompanies restoration. In an experiment simulating a small-scale restoration, we tested the effectiveness of a buoy-deployed seeding technique to maintain genetic diversity comparable to the seed source populations. Seeds from three extant source populations in San Francisco Bay were introduced into eighteen flow-through baywater mesocosms. Following seedling establishment, we used seven polymorphic microsatellite loci to compare genetic diversity indices from 128 shoots to those found in the source populations. Importantly, allelic richness and expected heterozygosity were not significantly reduced in the mesocosms, which also preserved the strong population differentiation present among source populations. However, the inbreeding coefficient F IS was elevated in two of the three sets of mesocosms when they were grouped according to their source population. This is probably a Wahlund effect from confining all half-siblings within each spathe to a single mesocosm, elevating F IS when the mesocosms were considered together. The conservation of most alleles and preservation of expected heterozygosity suggests that this seeding technique is an improvement over whole-shoot transplantation in the conservation of genetic diversity in eelgrass restoration efforts.


Assuntos
Conservação dos Recursos Naturais , DNA de Plantas , Variação Genética , Zosteraceae/genética , Genética Populacional , Repetições de Microssatélites
12.
Evolution ; 50(5): 1896-1907, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28565603

RESUMO

A simple difference in the body design of two species of marine urochordates in the ascidian genus Corella suggested that these species may differ in their mating systems. The two coexisting species share common life-history traits and morphology with the exception of a difference in body design that affects site of fertilization and embryonic development. Corella inflata has internal fertilization and embryonic development, while C. willmeriana has external fertilization and embryonic development. The natural mating system of these two species of solitary ascidians was inferred by comparing the relative survival of selfed and outcrossed fertilizations in the laboratory. Corella inflata, the internal fertilizer, showed no difference in survival between selfed and outcrossed fertilizations at any developmental stage through metamorphosis and early juvenile development. In contrast, self-fertilized crosses of C. willmeriana had significantly lower survival than outcrossed fertilizations even at the earliest scorable developmental stages. These results suggest that C. inflata may inbreed frequently in nature, while viable C. willmeriana offspring are primarily a result of outcrossing. The internally-fertilizing species, C. inflata, showed approximately 10% male sterility in laboratory crosses despite apparent morphological hermaphroditism. The externally-fertilizing, commonly outcrossing species, C. willmeriana, showed no difference in fertility between genders.

13.
Evolution ; 52(3): 746-756, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28565254

RESUMO

Despite the functional and phyletic ubiquity of highly polymorphic genetic recognition systems, the evolution and maintenance of these remarkable loci remain an empirical and theoretical puzzle. Many clonal invertebrates use polymorphic genetic recognition systems to discriminate kin from unrelated individuals during behavioral interactions that mediate competition for space. Space competition may have been a selective force promoting the evolution of highly polymorphic recognition systems, or preexisting polymorphic loci may have been coopted for the purpose of mediating space competition. Ascidian species in the family Botryllidae have an allorecognition system in which fusion or rejection between neighboring colonies is controlled by allele-sharing at a single, highly polymorphic locus. The behavioral sequence involved in allorecognition varies in a species-specific fashion with some species requiring extensive intercolony tissue integration prior to the allorecognition response, while other species contact opposing colonies at only a few points on the outer surface before resolving space conflicts. Due to an apparent species-specific continuum of behavioral variation in the degree of intercolony tissue integration required for allorecognition, this system lends itself to a phylogenetic analysis of the evolution of an allorecognition system. We constructed a molecular phylogeny of the botryllids based on 18S rDNA sequence and mapped allorecognition behavioral variation onto the phylogeny. Our phylogeny shows the basal allorecognition condition for the group is the most internal form of the recognition reaction. More derived species show progressively more external allorecognition responses, and in some cases loss of some features of internal function. We suggest that external allorecognition appears to be a secondary function of a polymorphic discriminatory system that was already in place due to other selective pressures such as gamete, pathogen, or developmental cell lineage recognition.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa