RESUMO
For thousands of years, the unique physicochemical properties of plant exudates have defined uses in material culture and practical applications. Native Australian plant exudates, including resins, kinos, and gums, have been used and continue to be used by Aboriginal Australians for numerous technical and cultural purposes. A historic collection of well-preserved native Australian plant exudates, assembled a century ago by plant naturalists, gives a rare window into the history and chemical composition of these materials. Here we report the full hierarchical characterization of four genera from this collection, Xanthorrhoea, Callitris, Eucalyptus, and Acacia, from the local elemental speciation, to functional groups and main molecular markers. We use high-resolution X-ray Raman spectroscopy (XRS) to achieve bulk-sensitive chemical speciation of these plant exudates, including insoluble, amorphous, and cross-linked fractions, without the limitation of invasive and/or surface specific methods. Combinatorial testing of the XRS data allows direct classification of these complex natural species as terpenoid, aromatic, phenolic, and polysaccharide materials. Differences in intragenera chemistry was evidenced by detailed interpretation of the XRS spectral features. We complement XRS with Fourier-transform infrared (FT-IR) spectroscopy, gas chromatographymass spectrometry (GC-MS), and pyrolysisGC-MS (Py-GC-MS). This multimodal approach provides a fundamental understanding of the chemistry of these natural materials long used by Aboriginal Australian peoples.
Assuntos
Acacia , Asphodelaceae , Eucalyptus , Pinales , Exsudatos de Plantas , Acacia/química , Austrália , Eucalyptus/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pinales/química , Exsudatos de Plantas/química , Terpenos/análise , Asphodelaceae/químicaRESUMO
One of the greatest benefits of synchrotron radiation is the ability to perform chemical speciation analysis through X-ray absorption spectroscopies (XAS). XAS imaging of large sample areas can be performed with either full-field or raster-scanning modalities. A common practice to reduce acquisition time while decreasing dose and/or increasing spatial resolution is to compare X-ray fluorescence images collected at a few diagnostic energies. Several authors have used different multivariate data processing strategies to establish speciation maps. In this manuscript, the theoretical aspects and assumptions that are often made in the analysis of these datasets are focused on. A robust framework is developed to perform speciation mapping in large bulk samples at high spatial resolution by comparison with known references. Two fully operational software implementations are provided: a user-friendly implementation within the MicroAnalysis Toolkit software, and a dedicated script developed under the R environment. The procedure is exemplified through the study of a cross section of a typical fossil specimen. The algorithm provides accurate speciation and concentration mapping while decreasing the data collection time by typically two or three orders of magnitude compared with the collection of whole spectra at each pixel. Whereas acquisition of spectral datacubes on large areas leads to very high irradiation times and doses, which can considerably lengthen experiments and generate significant alteration of radiation-sensitive materials, this sparse excitation energy procedure brings the total irradiation dose greatly below radiation damage thresholds identified in previous studies. This approach is particularly adapted to the chemical study of heterogeneous radiation-sensitive samples encountered in environmental, material, and life sciences.
RESUMO
The detailed description of corrosion processes in ancient and historical metal artifacts currently relies on the in-depth study of prepared cross sections. The in-plane elemental and phase distributions can be established from a combination of light and electron microscopy characterization. Here, we show that high-resolution virtual sectioning through synchrotron X-ray microcomputed tomography allows a precise noninvasive 3D description of the distribution of both internal and external mineral phases in whole objects. In fragments of early copper artifacts (third-second millennium BC) from Southern Mesopotamia and the Indus valley, this approach provided essential clues on long-term corrosion processes. Major and minor phases were identified through semiquantitative evaluation of attenuation coefficients using polychromatic X-ray illumination. We found evidence for initially unidentified phases through statistical processing of images. We discuss interpretation of the distribution of these phases. A good correlation between the corrosion phases identified by CT and by invasive BSE-SEM is demonstrated. In addition to the stratigraphy of the copper corrosion compounds, we examine and discuss the variations observed in the attenuation coefficients of Cu(I) phases. Semiquantitative synchrotron X-ray microtomography phase mapping requires no specific sample preparation, in particular polishing or surface finishing, and any material tearing or displacement is avoided. We also provide evidence for the noninvasive observation of phases rapidly altered upon preparation of real cross sections. The method can be applied when cross-sectioning even of minute fragments is impossible.
RESUMO
The DNA mismatch repair protein MutS recognizes mispaired bases in DNA and initiates repair in an ATP-dependent manner. Understanding of the allosteric coupling between DNA mismatch recognition and two asymmetric nucleotide binding sites at opposing sides of the MutS dimer requires identification of the relevant MutS.mmDNA.nucleotide species. Here, we use native mass spectrometry to detect simultaneous DNA mismatch binding and asymmetric nucleotide binding to Escherichia coli MutS. To resolve the small differences between macromolecular species bound to different nucleotides, we developed a likelihood based algorithm capable to deconvolute the observed spectra into individual peaks. The obtained mass resolution resolves simultaneous binding of ADP and AMP.PNP to this ABC ATPase in the absence of DNA. Mismatched DNA regulates the asymmetry in the ATPase sites; we observe a stable DNA-bound state containing a single AMP.PNP cofactor. This is the first direct evidence for such a postulated mismatch repair intermediate, and showcases the potential of native MS analysis in detecting mechanistically relevant reaction intermediates.
Assuntos
Pareamento Incorreto de Bases , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Adenilil Imidodifosfato/metabolismo , Algoritmos , Sítios de Ligação , DNA/química , Dimerização , Nucleotídeos/metabolismo , Ligação Proteica , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
MOTIVATION: Macromolecular crystal structures in the Protein Data Bank (PDB) are a key source of structural insight into biological processes. These structures, some >30 years old, were constructed with methods of their era. With PDB_REDO, we aim to automatically optimize these structures to better fit their corresponding experimental data, passing the benefits of new methods in crystallography on to a wide base of non-crystallographer structure users. RESULTS: We developed new algorithms to allow automatic rebuilding and remodeling of main chain peptide bonds and side chains in crystallographic electron density maps, and incorporated these and further enhancements in the PDB_REDO procedure. Applying the updated PDB_REDO to the oldest, but also to some of the newest models in the PDB, corrects existing modeling errors and brings these models to a higher quality, as judged by standard validation methods. AVAILABILITY AND IMPLEMENTATION: The PDB_REDO database and links to all software are available at http://www.cmbi.ru.nl/pdb_redo. CONTACT: r.joosten@nki.nl; a.perrakis@nki.nl SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Algoritmos , Bases de Dados de Proteínas , Proteínas/química , Biologia Computacional/métodos , Cristalografia por Raios X , Peptídeos/química , SoftwareRESUMO
The study of varnishes from musical instruments presents the difficulty of analysing very thin layers of heterogeneous materials on samples most of which are generally brittle and difficult to prepare. Such study is crucial to the understanding of historical musical instrument varnishing practices since written sources before 1800 are very rare and not precise. Fourier-transform infrared (FTIR) spectroscopy and imaging methods were applied to identify the major chemical components within the build-up of the varnish layers on a cello made by one of the most prominent French violin-makers of the eighteenth century (Jacques Boquay, ca. 1680-1730). Two types of FTIR imaging methods were used: scanning with a synchrotron-based microscope and full-field imaging using a 2D imager with a conventional source. An interpretation of the results obtained from these studies on the Boquay cello is that the maker first applied a proteinaceous layer, probably gelatine-based animal glue. He later applied a second layer based on a mixture of a drying oil and diterpenic resin from Pinaceae sp. From an historical perspective, the results complement previous studies by describing a second technique used for musical instrument finishes at the beginning of the eighteenth century in Europe.
RESUMO
The automated building of a protein model into an electron density map remains a challenging problem. In the ARP/wARP approach, model building is facilitated by initially interpreting a density map with free atoms of unknown chemical identity; all structural information for such chemically unassigned atoms is discarded. Here, this is remedied by applying restraints between free atoms, and between free atoms and a partial protein model. These are based on geometric considerations of protein structure and tentative (conditional) assignments for the free atoms. Restraints are applied in the REFMAC5 refinement program and are generated on an ad hoc basis, allowing them to fluctuate from step to step. A large set of experimentally phased and molecular replacement structures showcases individual structures where automated building is improved drastically by the conditional restraints. The concept and implementation we present can also find application in restraining geometries, such as hydrogen bonds, in low-resolution refinement.
Assuntos
Cristalografia por Raios X/métodos , Modelos Moleculares , Proteínas/química , Processamento de Sinais Assistido por Computador , Software , Algoritmos , Ligação de Hidrogênio , Conformação ProteicaRESUMO
The human LINE-1 endonuclease (L1-EN) contributes in defining the genomic integration sites of the abundant human L1 and Alu retrotransposons. LINEs have been considered as possible vehicles for gene delivery and understanding the mechanism of L1-EN could help engineering them as genetic tools. We tested the in vitro activity of point mutants in three L1-EN residues--Asp145, Arg155, Ile204--that are key for DNA cleavage, and determined their crystal structures. The L1-EN structure remains overall unaffected by the mutations, which change the enzyme activity but leave DNA cleavage sequence specificity mostly unaffected. To better understand the mechanism of L1-EN, we performed molecular dynamics simulations using as model the structures of wild type EN-L1, of two betaB6-betaB5 loop exchange mutants we have described previously to be important for DNA recognition, of the R155A mutant from this study, and of the homologous TRAS1 endonuclease: all confirm a rigid scaffold. The simulations crucially indicate that the betaB6-betaB5 loop shows an anticorrelated motion with the surface loops betaA6-betaA5 and betaB3-alphaB1. The latter loop harbors N118, a residue that alters DNA cleavage specificity in homologous endonucleases, and implies that the plasticity and correlated motion of these loops has a functional importance in DNA recognition and binding. To further explore how these loops are possibly involved in DNA binding, we docked computationally two DNA substrates to our structure, one involving a flipped-out nucleotide downstream the scissile phosphodiester; and one not. The models for both scenarios are feasible and agree with the hypotheses derived from the dynamic simulations. The reduced cleavage activity we have observed for the I204Y mutant above however, favors the flipped out nucleotide model.
Assuntos
Clivagem do DNA , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Sequência Conservada , Cristalografia por Raios X , Desoxirribonuclease I/genética , Humanos , Elementos Nucleotídeos Longos e Dispersos , Modelos Moleculares , Retroelementos , Relação Estrutura-AtividadeRESUMO
Glial cells missing (GCM) proteins form a small family of transcriptional regulators involved in different developmental processes. They contain a DNA-binding domain that is highly conserved from flies to mice and humans and consists of approximately 150 residues. The GCM domain of the mouse GCM homolog a was expressed in bacteria. Extended X-ray absorption fine structure and particle-induced X-ray emission analysis techniques showed the presence of two Zn atoms with four-fold coordination and cysteine/histidine residues as ligands. Zn atoms can be removed from the GCM domain by the Zn chelator phenanthroline only under denaturating conditions. This suggests that the Zn ions are buried in the interior of the GCM domain and that their removal abolishes DNA-binding because it impairs the structure of the GCM domain. Our results define the GCM domain as a new type of Zn-coordinating, sequence-specific DNA-binding domain.
Assuntos
Proteínas de Ligação a DNA/química , Neuropeptídeos/química , Transativadores/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Humanos , Camundongos , Dados de Sequência Molecular , Neuropeptídeos/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Espectrometria por Raios X , Análise Espectral , Transativadores/genética , Raios X , Zinco/químicaRESUMO
The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.
Assuntos
Peixes/anatomia & histologia , Fósseis , Metais Terras Raras/química , Penaeidae/anatomia & histologia , Espectrometria por Raios X/métodos , Animais , Paleontologia , Espectrometria por Raios X/instrumentação , SíncrotronsRESUMO
ARP/wARP is a software suite to build macromolecular models in X-ray crystallography electron density maps. Structural genomics initiatives and the study of complex macromolecular assemblies and membrane proteins all rely on advanced methods for 3D structure determination. ARP/wARP meets these needs by providing the tools to obtain a macromolecular model automatically, with a reproducible computational procedure. ARP/wARP 7.0 tackles several tasks: iterative protein model building including a high-level decision-making control module; fast construction of the secondary structure of a protein; building flexible loops in alternate conformations; fully automated placement of ligands, including a choice of the best-fitting ligand from a 'cocktail'; and finding ordered water molecules. All protocols are easy to handle by a nonexpert user through a graphical user interface or a command line. The time required is typically a few minutes although iterative model building may take a few hours.
Assuntos
Cristalografia por Raios X/métodos , Substâncias Macromoleculares/química , Modelos Moleculares , Proteínas/química , Software , LigantesRESUMO
One of the most cumbersome and time-demanding tasks in completing a protein model is building short missing regions or ;loops'. A method is presented that uses structural and electron-density information to build the most likely conformations of such loops. Using the distribution of angles and dihedral angles in pentapeptides as the driving parameters, a set of possible conformations for the C(alpha) backbone of loops was generated. The most likely candidate is then selected in a hierarchical manner: new and stronger restraints are added while the loop is built. The weight of the electron-density correlation relative to geometrical considerations is gradually increased until the most likely loop is selected on map correlation alone. To conclude, the loop is refined against the electron density in real space. This is started by using structural information to trace a set of models for the C(alpha) backbone of the loop. Only in later steps of the algorithm is the electron-density correlation used as a criterion to select the loop(s). Thus, this method is more robust in low-density regions than an approach using density as a primary criterion. The algorithm is implemented in a loop-building program, Loopy, which can be used either alone or as part of an automatic building cycle. Loopy can build loops of up to 14 residues in length within a couple of minutes. The average root-mean-square deviation of the C(alpha) atoms in the loops built during validation was less than 0.4 A. When implemented in the context of automated model building in ARP/wARP, Loopy can increase the completeness of the built models.
Assuntos
Inteligência Artificial , Modelos Moleculares , Proteínas/química , Algoritmos , Conformação Proteica , Reprodutibilidade dos Testes , SoftwareRESUMO
Automatic iterative model (re-)building, as implemented in ARP/wARP and its new control system flex-wARP, is particularly well suited to follow structure solution by molecular replacement. More than 100 molecular-replacement solutions automatically solved by the BALBES software were submitted to three standard protocols in flex-wARP and the results were compared with final models from the PDB. Standard metrics were gathered in a systematic way and enabled the drawing of statistical conclusions on the advantages of each protocol. Based on this analysis, an empirical estimator was proposed that predicts how good the final model produced by flex-wARP is likely to be based on the experimental data and the quality of the molecular-replacement solution. To introduce the differences between the three flex-wARP protocols (keeping the complete search model, converting it to atomic coordinates but ignoring atom identities or using the electron-density map calculated from the molecular-replacement solution), two examples are also discussed in detail, focusing on the evolution of the models during iterative rebuilding. This highlights the diversity of paths that the flex-wARP control system can employ to reach a nearly complete and accurate model while actually starting from the same initial information.
Assuntos
Algoritmos , Software , Cristalografia por Raios X , Bases de Dados de Proteínas , Modelos Moleculares , Proteínas/química , Enzimas de Conjugação de Ubiquitina/químicaRESUMO
Structure determination and functional characterization of macromolecular complexes requires the purification of the different subunits in large quantities and their assembly into a functional entity. Although isolation and structure determination of endogenous complexes has been reported, much progress has to be made to make this technology easily accessible. Co-expression of subunits within hosts such as Escherichia coli and insect cells has become more and more amenable, even at the level of high-throughput projects. As part of SPINE (Structural Proteomics In Europe), several laboratories have investigated the use co-expression techniques for their projects, trying to extend from the common binary expression to the more complicated multi-expression systems. A new system for multi-expression in E. coli and a database system dedicated to handle co-expression data are described. Results are also reported from various case studies investigating different methods for performing co-expression in E. coli and insect cells.
Assuntos
Células Eucarióticas/metabolismo , Células Procarióticas/metabolismo , Proteínas Recombinantes/biossíntese , Algoritmos , Animais , Segurança Computacional , Simulação por Computador , Quinases Ciclina-Dependentes/metabolismo , Reparo do DNA , Bases de Dados Genéticas , Escherichia coli/metabolismo , Vetores Genéticos , Gestão da Informação , Insetos/metabolismo , RNA/biossíntese , RNA/genética , Receptores Citoplasmáticos e Nucleares/genética , Fator de Transcrição TFIID/genética , Ubiquitina-Proteína Ligases/genética , Quinase Ativadora de Quinase Dependente de CiclinaRESUMO
Glia cell missing (GCM) transcription factors form a small family of transcriptional regulators in metazoans. The prototypical Drosophila GCM protein directs the differentiation of neuron precursor cells into glia cells, whereas mammalian GCM proteins are involved in placenta and parathyroid development. GCM proteins share a highly conserved 150 amino acid residue region responsible for DNA binding, known as the GCM domain. Here we present the crystal structure of the GCM domain from murine GCMa bound to its octameric DNA target site at 2.85 A resolution. The GCM domain exhibits a novel fold consisting of two domains tethered together by one of two structural Zn ions. We observe the novel use of a beta-sheet in DNA recognition, whereby a five- stranded beta-sheet protrudes into the major groove perpendicular to the DNA axis. The structure combined with mutational analysis of the target site and of DNA-contacting residues provides insight into DNA recognition by this new type of Zn-containing DNA-binding domain.
Assuntos
DNA/metabolismo , Neuropeptídeos/metabolismo , Estrutura Terciária de Proteína , Transativadores/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Neuropeptídeos/química , Neuropeptídeos/genética , Conformação de Ácido Nucleico , Dobramento de Proteína , Alinhamento de Sequência , Transativadores/química , Transativadores/genética , Zinco/metabolismoRESUMO
The design of a new versatile control system that will underlie future releases of the automated model-building package ARP/wARP is presented. A sophisticated expert system is under development that will transform ARP/wARP from a very useful model-building aid to a truly automated package capable of delivering complete, well refined and validated models comparable in quality to the result of intensive manual checking, rebuilding, hypothesis testing, refinement and validation cycles of an experienced crystallographer. In addition to the presentation of this control system, recent advances, ideas and future plans for improving the current model-building algorithms, especially for completing partially built models, are presented. Furthermore, a concept for integrating validation routines into the iterative model-building process is also presented.