Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38190667

RESUMO

Origins of replication sites (ORIs) are crucial genomic regions where DNA replication initiation takes place, playing pivotal roles in fundamental biological processes like cell division, gene expression regulation, and DNA integrity. Accurate identification of ORIs is essential for comprehending cell replication, gene expression, and mutation-related diseases. However, experimental approaches for ORI identification are often expensive and time-consuming, leading to the growing popularity of computational methods. In this study, we present PLANNER (DeeP LeArNiNg prEdictor for ORI), a novel approach for species-specific and cell-specific prediction of eukaryotic ORIs. PLANNER uses the multi-scale ktuple sequences as input and employs the DNABERT pre-training model with transfer learning and ensemble learning strategies to train accurate predictive models. Extensive empirical test results demonstrate that PLANNER achieved superior predictive performance compared to state-of-the-art approaches, including iOri-Euk, Stack-ORI, and ORI-Deep, within specific cell types and across different cell types. Furthermore, by incorporating an interpretable analysis mechanism, we provide insights into the learned patterns, facilitating the mapping from discovering important sequential determinants to comprehensively analysing their biological functions. To facilitate the widespread utilisation of PLANNER, we developed an online webserver and local stand-alone software, available at http://planner.unimelb-biotools.cloud.edu.au/ and https://github.com/CongWang3/PLANNER, respectively.

2.
Comput Biol Med ; 163: 107155, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356289

RESUMO

The genome of Mycobacterium tuberculosis contains a relatively high percentage (10%) of genes that are poorly characterised because of their highly repetitive nature and high GC content. Some of these genes encode proteins of the PE/PPE family, which are thought to be involved in host-pathogen interactions, virulence, and disease pathogenicity. Members of this family are genetically divergent and challenging to both identify and classify using conventional computational tools. Thus, advanced in silico methods are needed to identify proteins of this family for subsequent functional annotation efficiently. In this study, we developed the first deep learning-based approach, termed Digerati, for the rapid and accurate identification of PE and PPE family proteins. Digerati was built upon a multipath parallel hybrid deep learning framework, which equips multi-layer convolutional neural networks with bidirectional, long short-term memory, equipped with a self-attention module to effectively learn the higher-order feature representations of PE/PPE proteins. Empirical studies demonstrated that Digerati achieved a significantly better performance (∼18-20%) than alignment-based approaches, including BLASTP, PHMMER, and HHsuite, in both prediction accuracy and speed. Digerati is anticipated to facilitate community-wide efforts to conduct high-throughput identification and analysis of PE/PPE family members. The webserver and source codes of Digerati are publicly available at http://web.unimelb-bioinfortools.cloud.edu.au/Digerati/.


Assuntos
Aprendizado Profundo , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Virulência/genética
3.
iScience ; 24(8): 102893, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34401672

RESUMO

Here, with the example of common copy number variation (CNV) in the TSPAN8 gene, we present an important piece of work in the field of CNV detection, that is, CNV association with complex human traits such as 1H NMR metabolomic phenotypes and an example of functional characterization of CNVs among human induced pluripotent stem cells (HipSci). We report TSPAN8 exon 11 (ENSE00003720745) as a pleiotropic locus associated with metabolomic regulation and show that its biology is associated with several metabolic diseases such as type 2 diabetes (T2D) and cancer. Our results further demonstrate the power of multivariate association models over univariate methods and define metabolomic signatures for variants in TSPAN8.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa