RESUMO
Aging is the biggest risk factor for Parkinson's disease (PD), suggesting that age-related changes in the brain promote dopamine neuron vulnerability. It is unclear, however, whether aging alone is sufficient to cause significant dopamine neuron loss, and if so, how this intersects with PD-related neurodegeneration. Here, through examining a large collection of naturally varying Drosophila strains, we find a strong relationship between life span and age-related dopamine neuron loss. Strains with naturally short-lived animals exhibit a loss of dopamine neurons without generalized neurodegeneration, while animals from long-lived strains retain dopamine neurons across age. Metabolomic profiling reveals lower glutathione levels in short-lived strains which is associated with elevated levels of reactive oxygen species (ROS), sensitivity to oxidative stress, and vulnerability to silencing the familial PD gene parkin. Strikingly, boosting neuronal glutathione levels via glutamate-cysteine ligase (Gcl) overexpression is sufficient to normalize ROS levels, extend life span, and block dopamine neurons loss in short-lived backgrounds, demonstrating that glutathione deficiencies are central to neurodegenerative phenotypes associated with short longevity. These findings may be relevant to human PD pathogenesis, where glutathione depletion is reported to occur in the idiopathic PD patient brain through unknown mechanisms. Building on this, we find reduced expression of the Gcl catalytic subunit in both Drosophila strains vulnerable to age-related dopamine neuron loss and in the human brain from familial PD patients harboring the common LRRK2 G2019S mutation. Our study across Drosophila and human PD systems suggests that glutathione synthesis and levels play a conserved role in regulating age-related dopamine neuron health.
Assuntos
Envelhecimento , Neurônios Dopaminérgicos , Proteínas de Drosophila , Glutationa , Longevidade , Doença de Parkinson , Espécies Reativas de Oxigênio , Animais , Glutationa/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Espécies Reativas de Oxigênio/metabolismo , Drosophila melanogaster/metabolismo , Estresse Oxidativo , Humanos , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/genética , Degeneração Neural/patologia , Degeneração Neural/metabolismo , Degeneração Neural/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Drosophila/metabolismo , MasculinoRESUMO
BACKGROUND: Varicella zoster virus (VZV) vasculopathy is characterized by persistent arterial inflammation leading to stroke. Studies show that VZV induces amyloid formation that may aggravate vasculitis. Thus, we determined if VZV central nervous system infection produces amyloid. METHODS: Aß peptides, amylin, and amyloid were measured in cerebrospinal fluid (CSF) from 16 VZV vasculopathy subjects and 36 stroke controls. To determine if infection induced amyloid deposition, mock- and VZV-infected quiescent primary human perineurial cells (qHPNCs), present in vasculature, were analyzed for intracellular amyloidogenic transcripts/proteins and amyloid. Supernatants were assayed for amyloidogenic peptides and ability to induce amyloid formation. To determine amylin's function during infection, amylin was knocked down with small interfering RNA and viral complementary DNA (cDNA) was quantitated. RESULTS: Compared to controls, VZV vasculopathy CSF had increased amyloid that positively correlated with amylin and anti-VZV antibody levels; Aß40 was reduced and Aß42 unchanged. Intracellular amylin, Aß42, and amyloid were seen only in VZV-infected qHPNCs. VZV-infected supernatant formed amyloid fibrils following addition of amyloidogenic peptides. Amylin knockdown decreased viral cDNA. CONCLUSIONS: VZV infection increased levels of amyloidogenic peptides and amyloid in CSF and qHPNCs, indicating that VZV-induced amyloid deposition may contribute to persistent arterial inflammation in VZV vasculopathy. In addition, we identified a novel proviral function of amylin.
Assuntos
Peptídeos beta-Amiloides , Amiloide , Arterite , Herpes Zoster , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Fragmentos de Peptídeos , Amiloide/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Arterite/líquido cefalorraquidiano , Arterite/diagnóstico , Arterite/virologia , DNA Complementar , DNA Viral , Herpes Zoster/líquido cefalorraquidiano , Herpes Zoster/diagnóstico , Herpesvirus Humano 3 , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Acidente Vascular CerebralRESUMO
Rhesus macaques intrabronchially inoculated with simian varicella virus (SVV), the counterpart of human varicella-zoster virus (VZV), developed primary infection with viremia and rash, which resolved upon clearance of viremia, followed by the establishment of latency. To assess the role of CD4 T cell immunity in reactivation, monkeys were treated with a single 50-mg/kg dose of a humanized monoclonal anti-CD4 antibody; within 1 week, circulating CD4 T cells were reduced from 40 to 60% to 5 to 30% of the total T cell population and remained low for 2 months. Very low viremia was seen only in some of the treated monkeys. Zoster rash developed after 7 days in the monkey with the most extensive CD4 T cell depletion (5%) and in all other monkeys at 10 to 49 days posttreatment, with recurrent zoster in one treated monkey. SVV DNA was detected in the lung from two of five monkeys, in bronchial lymph nodes from one of the five monkeys, and in ganglia from at least two dermatomes in three of five monkeys. Immunofluorescence analysis of skin rash, lungs, lymph nodes, and ganglia revealed SVV ORF63 protein at the following sites: sweat glands in skin; type II cells in lung alveoli, macrophages, and dendritic cells in lymph nodes; and the neuronal cytoplasm of ganglia. Detection of SVV antigen in multiple tissues upon CD4 T cell depletion and virus reactivation suggests a critical role for CD4 T cell immunity in controlling varicella virus latency.IMPORTANCE Reactivation of latent VZV in humans can result in serious neurological complications. VZV-specific cell-mediated immunity is critical for the maintenance of latency. Similar to VZV in humans, SVV causes varicella in monkeys, establishes latency in ganglia, and reactivates to produce shingles. Here, we show that depletion of CD4 T cells in rhesus macaques results in SVV reactivation, with virus antigens found in zoster rash and SVV DNA and antigens found in lungs, lymph nodes, and ganglia. These results suggest the critical role of CD4 T cell immunity in controlling varicella virus latency.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Depleção Linfocítica , Pele/imunologia , Varicellovirus/isolamento & purificação , Ativação Viral/imunologia , Latência Viral/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Modelos Animais de Doenças , Feminino , Gânglios/citologia , Gânglios/imunologia , Gânglios/virologia , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Linfonodos/citologia , Linfonodos/imunologia , Linfonodos/virologia , Macaca mulatta , Masculino , Pele/citologia , Pele/virologiaRESUMO
Simian varicella virus (SVV), the primate counterpart of varicella-zoster virus, causes varicella (chickenpox), establishes latency in ganglia, and reactivates to produce zoster. We previously demonstrated that a recombinant SVV expressing enhanced green fluorescent protein (rSVV.eGFP) is slightly attenuated both in culture and in infected monkeys. Here, we generated two additional recombinant SVVs to visualize infected cells in vitro and in vivo One harbors eGFP fused to the N terminus of open reading frame 9 (ORF9) (rSVV.eGFP-2a-ORF9), and another harbors eGFP fused to the C terminus of ORF66 (rSVV.eGFP-ORF66). Both recombinant viruses efficiently expressed eGFP in cultured cells. Both recombinant SVV infections in culture were comparable to that of wild-type SVV (SVV.wt). Unlike SVV.wt, eGFP-tagged SVV did not replicate in rhesus cells in culture. Intratracheal (i.t.) or i.t. plus intravenous (i.v.) inoculation of rhesus macaques with these new eGFP-tagged viruses resulted in low viremia without varicella rash, although SVV DNA was abundant in bronchoalveolar lavage (BAL) fluid at 10 days postinoculation (dpi). SVV DNA was also found in trigeminal ganglia of one monkey inoculated with rSVV.eGFP-ORF66. Intriguingly, a humoral response to both SVV and eGFP was observed. In addition, monkeys inoculated with the eGFP-expressing viruses were protected from superinfection with SVV.wt, suggesting that the monkeys had mounted an efficient immune response. Together, our results show that eGFP expression could be responsible for their reduced pathogenesis.IMPORTANCE SVV infection in nonhuman primates has served as an extremely useful animal model to study varicella-zoster virus (VZV) pathogenesis. eGFP-tagged viruses are a great tool to investigate their pathogenesis. We constructed and tested two new recombinant SVVs with eGFP inserted into two different locations in the SVV genome. Both recombinant SVVs showed robust replication in culture but reduced viremia compared to that with SVV.wt during primary infection in rhesus macaques. Our results indicate that conclusions on eGFP-tagged viruses based on in vitro results should be handled with care, since eGFP expression could result in attenuation of the virus.
Assuntos
Regulação Viral da Expressão Gênica , Proteínas de Fluorescência Verde , Infecções por Herpesviridae , Doenças dos Macacos , Fases de Leitura Aberta , Varicellovirus , Animais , Linhagem Celular , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/veterinária , Macaca mulatta , Doenças dos Macacos/genética , Doenças dos Macacos/metabolismo , Doenças dos Macacos/patologia , Varicellovirus/genética , Varicellovirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Aging is the biggest risk factor for Parkinson's disease (PD), suggesting that age-related changes in the brain promote dopamine neuron vulnerability. It is unclear, however, whether aging alone is sufficient to cause significant dopamine neuron loss and if so, how this intersects with PD-related neurodegeneration. Here, through examining a large collection of naturally varying Drosophila strains, we find a strong relationship between life span and age-related dopamine neuron loss. Naturally short-lived strains exhibit a loss of dopamine neurons but not generalized neurodegeneration, while long-lived strains retain dopamine neurons across age. Metabolomic profiling reveals lower glutathione levels in short-lived strains which is associated with elevated levels of reactive oxygen species (ROS), sensitivity to oxidative stress and vulnerability to silencing the familial PD gene parkin . Strikingly, boosting neuronal glutathione levels via glutamate-cysteine ligase (GCL) overexpression is sufficient to normalize ROS levels, extend life span and block dopamine neurons loss in short-lived backgrounds, demonstrating that glutathione deficiencies are central to neurodegenerative phenotypes associated with short longevity. These findings may be relevant to human PD pathogenesis, where glutathione depletion is frequently reported in idiopathic PD patient brain. Building on this evidence, we detect reduced levels of GCL catalytic and modulatory subunits in brain from PD patients harboring the LRRK2 G2019S mutation, implicating possible glutathione deficits in familial LRRK2-linked PD. Our study across Drosophila and human PD systems suggests that glutathione plays an important role in the influence of aging on PD neurodegeneration.
RESUMO
Aging is the greatest risk factor for Parkinson's disease (PD), suggesting that mechanisms driving the aging process promote PD neurodegeneration. Several lines of evidence support a role for aging in PD. First, hallmarks of brain aging such as mitochondrial dysfunction and oxidative stress, loss of protein homeostasis, and neuroinflammation are centrally implicated in PD development. Second, mutations that cause monogenic PD are present from conception, yet typically only cause disease following a period of aging. Third, lifespan-extending genetic, dietary, or pharmacological interventions frequently attenuate PD-related neurodegeneration. These observations support a central role for aging in disease development and suggest that new discoveries in the biology of aging could be leveraged to elucidate novel mechanisms of PD pathophysiology. A recent rapid growth in our understanding of conserved molecular pathways that govern model organism lifespan and healthspan has highlighted a key role for metabolism and nutrient sensing pathways. Uncovering how metabolic pathways involving NAD+ consumption, insulin, and mTOR signaling link to the development of PD is underway and implicates metabolism in disease etiology. Here, we assess areas of convergence between nervous system aging and PD, evaluate the link between metabolism, aging, and PD and address the potential of metabolic interventions to slow or halt the onset of PD-related neurodegeneration drawing on evidence from cellular and animal models.
Assuntos
Doença de Parkinson , Animais , Doença de Parkinson/metabolismo , Mitocôndrias , Envelhecimento , Estresse Oxidativo/fisiologia , Transdução de SinaisRESUMO
Primary simian varicella virus (SVV) infection and reactivation in nonhuman primates is a valuable animal model in the study of varicella zoster virus disease [varicella (chickenpox) and herpes zoster (shingles)]. To understand SVV pathogenesis in skin, we inoculated 10 rhesus macaques with SVV, resulting in varicella rash. After the establishment of latency, eight of the monkeys were immunosuppressed using tacrolimus with or without irradiation and prednisone and two monkeys were not immunosuppressed. Zoster rash developed in all immunosuppressed monkeys and in one non-immunosuppressed monkey. Five monkeys had recurrent zoster. During varicella and zoster, SVV DNA in skin scrapings ranged from 50 to 107 copies/100 ng of total DNA and 2-127 copies/100 ng of total DNA, respectively. Detection of SVV DNA in blood during varicella was more frequent and abundant compared to that of zoster. During varicella and zoster, SVV antigens colocalized with neurons expressing ß-III tubulin in epidermis, hair follicles, and sweat glands, suggesting axonal transport of the virus. Together, we have demonstrated that both SVV DNA and antigens can be detected in skin lesions during varicella and zoster, providing the basis for further studies on SVV skin pathogenesis, including immune responses and mechanisms of peripheral spread.
Assuntos
Varicela , Exantema , Herpes Zoster , Varicellovirus , Animais , Herpesvirus Humano 3/fisiologia , Macaca mulatta , Varicellovirus/genéticaRESUMO
Simian varicella virus (SVV) infection of non-human primates is the counterpart of varicella zoster virus (VZV) infection in humans. To develop non-invasive methods of assessing SVV infection, we tested for the presence of SVV DNA in saliva, as has been documented in human VZV infection, and in buccal cells to determine whether epithelial cells might provide a more reliable source of material for analysis. Five rhesus macaques intratracheally inoculated with SVV all developed varicella with viremia and macular-papular skin rash in 1-2 weeks, which resolved followed by establishment of latency. DNA extracted from longitudinal blood peripheral blood mononuclear cells (PBMCs), saliva and buccal samples collected during acute infection and establishment of latency were analyzed by real-time qPCR. After intratracheal inoculation, viremia was observed, with peak levels of 101-102 copies of SVV DNA in 100 ng of PBMC DNA at 4 and 7 days post inoculation (dpi), which then decreased at 9-56 dpi. In saliva and buccal cells at 7 dpi, 101-104 copies and 101-105 copies of SVV DNA in 100 ng of cellular DNA, respectively, were detected in all the five monkeys. At 9 dpi, saliva samples from only two of the five monkeys contained SVV DNA at 102-103 copies/100 ng of saliva DNA, while buccal cells from all five monkeys showed 100-103 copies of SVV DNA/100 ng of buccal cell DNA. Similar to viremia, SVV DNA in saliva and buccal cells at 11-56 dpi was lower, suggesting clearance of viral shedding. SVV DNA levels were generally higher in buccal cells than in saliva. Our findings indicate that SVV shedding into the oral cavity parallels acute SVV infection and underscore the relevance of both saliva and buccal cell samples to monitor acute varicella virus infection.