RESUMO
OBJECTIVE: To assess the role of the glycoprotein PRG4 in joint lubrication and chondroprotection by measuring friction, stiffness, surface topography, and subsurface histology of the hip joints of Prg4(-/-) and wild-type (WT) mice. METHODS: Friction and elastic modulus were measured in cartilage from the femoral heads of Prg4(-/-) and WT mice ages 2, 4, 10, and 16 weeks using atomic force microscopy, and the surface microstructure was imaged. Histologic sections of each femoral head were stained and graded. RESULTS: Histologic analysis of the joints of Prg4(-/-) mice showed an enlarged, fragmented surface layer of variable thickness with Safranin O-positive formations sometimes present, a roughened underlying articular cartilage surface, and a progressive loss of pericellular proteoglycans. Friction was significantly higher on cartilage of Prg4(-/-) mice at age 16 weeks, but statistically significant differences in friction were not detected at younger ages. The elastic modulus of the cartilage was similar between cartilage surfaces of Prg4(-/-) and WT mice at young ages, but cartilage of WT mice showed increasing stiffness with age, with significantly higher moduli than cartilage of Prg4(-/-) mice at older ages. CONCLUSION: Deletion of the gene Prg4 results in significant structural and biomechanical changes in the articular cartilage with age, some of which are consistent with osteoarthritic degeneration. These findings suggest that PRG4 plays a significant role in preserving normal joint structure and function.
Assuntos
Cartilagem Articular/metabolismo , Cabeça do Fêmur/metabolismo , Articulações/metabolismo , Proteoglicanas/metabolismo , Fatores Etários , Animais , Fenômenos Biomecânicos/fisiologia , Cartilagem Articular/patologia , Elasticidade , Cabeça do Fêmur/patologia , Articulações/patologia , Camundongos , Camundongos Knockout , Microscopia de Força Atômica , Proteoglicanas/genética , Estatísticas não Paramétricas , Propriedades de Superfície , Membrana Sinovial/metabolismo , Membrana Sinovial/patologiaRESUMO
Lubricin and hyaluronic acid (HA), molecular constituents of synovial fluid, have long been theorized to play a role in joint lubrication and wear protection. While lubricin has been shown to function as a boundary lubricant, conflicting evidence exists as to the boundary lubricating ability of hyaluronic acid. Here, we use colloidal force microscopy to explore the friction behavior of these two molecules on the microscale between chemically uniform hydrophilic (hydroxyl-terminated) and hydrophobic (methyl-terminated) surfaces in physiological buffer solution. Behaviors on both surfaces are physiologically relevant since the heterogeneous articular cartilage surface contains both hydrophilic and hydrophobic elements. Friction between hydrophobic surfaces was initially high (µ=1.1, at 100nN of applied normal load) and was significantly reduced by lubricin addition while friction between hydrophilic surfaces was initially low (µ=0.1) and was slightly increased by lubricin addition. At lubricin concentrations above 200 µg/ml, friction behavior on the two surfaces was similar (µ=0.2) indicating that nearly all interaction between the two surfaces was between adsorbed lubricin molecules rather than between the surfaces themselves. In contrast, addition of HA did not appreciably alter the frictional behavior between the model surfaces. No synergistic effect on friction behavior was seen in a physiological mixture of lubricin and HA. Lubricin can equally mediate the frictional response between both hydrophilic and hydrophobic surfaces, likely fully preventing direct surface-to-surface contact at sufficient concentrations, whereas HA provides considerably less boundary lubrication.
RESUMO
Articular cartilage provides a low-friction, wear-resistant surface for the motion of diarthrodial joints. The objective of this study was to develop a method for in situ friction measurement of murine cartilage using a colloidal probe attached to the cantilever of an atomic force microscope. Sliding friction was measured between a chemically functionalized microsphere and the cartilage of the murine femoral head. Friction was measured at normal loads ranging incrementally from 20 to 100 nN with a sliding speed of 40 microm/s and sliding distance of 64 microm. Under these test conditions, hydrostatic pressurization and biphasic load support in the cartilage were minimized, providing frictional measurements that predominantly reflect boundary lubrication properties. Friction coefficients measured on murine tissue (0.25+/-0.11) were similar to those measured on porcine tissue (0.23+/-0.09) and were in general agreement with measurements of boundary friction on cartilage by other researchers. Using the colloidal probe as an indenter, the elastic mechanical properties and surface roughness were measured in the same configuration. Interfacial shear was found to be the principal mechanism of friction generation, with little to no friction resulting from plowing forces, collision forces, or energy losses due to normal deformation. This measurement technique can be applied to future studies of cartilage friction and mechanical properties on genetically altered mice or other small animals.
Assuntos
Cartilagem/fisiologia , Cabeça do Fêmur/fisiologia , Animais , Cartilagem/ultraestrutura , Elasticidade , Cabeça do Fêmur/ultraestrutura , Fricção , Camundongos , Microscopia de Força Atômica/métodos , Propriedades de Superfície , SuínosRESUMO
Mutation or loss of collagen VI has been linked to a variety of musculoskeletal abnormalities, particularly muscular dystrophies, tissue ossification and/or fibrosis, and hip osteoarthritis. However, the role of collagen VI in bone and cartilage structure and function in the knee is unknown. In this study, we examined the role of collagen VI in the morphology and physical properties of bone and cartilage in the knee joint of Col6a1(-/-) mice by micro-computed tomography (microCT), histology, atomic force microscopy (AFM), and scanning microphotolysis (SCAMP). Col6a1(-/-) mice showed significant differences in trabecular bone structure, with lower bone volume, connectivity density, trabecular number, and trabecular thickness but higher structure model index and trabecular separation compared to Col6a1(+/+) mice. Subchondral bone thickness and mineral content increased significantly with age in Col6a1(+/+) mice, but not in Col6a1(-/-) mice. Col6a1(-/-) mice had lower cartilage degradation scores, but developed early, severe osteophytes compared to Col6a1(+/+) mice. In both groups, cartilage roughness increased with age, but neither the frictional coefficient nor compressive modulus of the cartilage changed with age or genotype, as measured by AFM. Cartilage diffusivity, measured via SCAMP, varied minimally with age or genotype. The absence of type VI collagen has profound effects on knee joint structure and morphometry, yet minimal influences on the physical properties of the cartilage. Together with previous studies showing accelerated hip osteoarthritis in Col6a1(-/-) mice, these findings suggest different roles for collagen VI at different sites in the body, consistent with clinical data.