Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Arch Toxicol ; 94(9): 3315-3327, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548756

RESUMO

Systemic scorpion envenomation is characterized by massive neurotransmitter release from peripheral nerves mediated primarily by scorpion venoms neurotoxins. Tityus bahiensis is one of the medically most important species in Brazil, but its venom pharmacology, especially regarding to peripheral nervous system, is poorly understood. Here, we evaluated the T. bahiensis venom activity on autonomic (sympathetic) neurotransmission by using a variety of approaches, including vas deferens twitch-tension recordings, electrophysiological measurements (resting membrane potentials, spontaneous excitatory junctional potentials and whole-cell patch-clamp), calcium imaging and histomorphological analysis. Low concentrations of venom (≤ 3 µg/mL) facilitated the electrically stimulated vas deferens contractions without affecting postsynaptic receptors or damaging the smooth muscle cells. Transient TTX-sensitive sustained contractions and resting membrane depolarization were mediated mainly by massive spontaneous ATP release. High venom concentrations (≥ 10 µg/mL) blocked the muscle contractions and induced membrane depolarization. In neuronal cells (ND7-23wt), the venom increased the peak sodium current, modified the current-voltage relationship by left-shifting the Nav-channel activation curve, thereby facilitating the opening of these channels. The venom also caused a time-dependent increase in neuronal calcium influx. These results indicate that the sympathetic hyperstimulation observed in systemic envenomation is presynaptically driven, probably through the interaction of α- and ß-toxins with neuronal sodium channels.


Assuntos
Venenos de Escorpião/toxicidade , Escorpiões , Animais , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/fisiologia
2.
J Natl Med Assoc ; 115(1): 38-45, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577555

RESUMO

OBJECTIVE: Breast cancer is the most lethal malignancy for women worldwide. Developed countries, such as Portugal, Spain, and the United States, have declining mortality rates due to breast cancer; however, in developing countries, the epidemiological reports are scarce. In this context, the aims of this study are to describe and discuss the female breast cancer profile of hospitalization and mortality according to age and geographic region in Brazil from 2008 to 2019. METHODS: Data were obtained from the National Health System Department of Informatics (DATASUS), maintained by the Brazilian Ministry of Health, which includes the registers of hospitalization and mortality by malignant neoplasm of breast (code C50, ICD-10). Proportional rates of hospitalization and deaths were estimated per 100,000 inhabitants according to respective subjects' age, region, and year of the occurrence. RESULTS: From 2008 to 2019, 643,822 hospital admissions due to malignant neoplasm of breast were reported in Brazil, of which the South and Southeast regions were the most prevalent. Higher hospitalization rates were seen in subjects aged 50-79-years-old. Regarding mortality, 53,480 deaths by breast cancer were reported; similarly to hospitalization, the Southeast and South were the most affected regions. Mortality rates have increased over time in different magnitudes depending on subjects' age. CONCLUSION: We have shown an increase in morbidity and mortality over time, which is dependent on patients' age and region. The results presented here may contribute to the ongoing discussion about the role and future perspectives of the Brazilian health care system, especially regarding to the strategies for the prevention, control, and treatment of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Transversais , Brasil/epidemiologia , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/terapia , Morbidade , Hospitalização
3.
Pharmacol Ther ; 245: 108416, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37061202

RESUMO

Voltage-activated Na+ (NaV) channels are crucial contributors to rapid electrical signaling in the human body. As such, they are among the most targeted membrane proteins by clinical therapeutics and natural toxins. Several of the nine mammalian NaV channel subtypes play a documented role in pain or other sensory processes such as itch, touch, and smell. While causal relationships between these subtypes and biological function have been extensively described, the physiological role of NaV1.9 is less understood. Yet, mutations in NaV1.9 can cause striking disease phenotypes related to sensory perception such as loss or gain of pain and chronic itch. Here, we explore our current knowledge of the mechanisms by which NaV1.9 may contribute to pain and elaborate on the challenges associated with establishing links between experimental conditions and human disease. This review also discusses the lack of comprehensive insights into NaV1.9-specific pharmacology, an unfortunate situation since modulatory compounds may have tremendous potential in the clinic to treat pain or as precision tools to examine the extent of NaV1.9 participation in sensory perception processes.


Assuntos
Dor , Toxinas Biológicas , Animais , Humanos , Mamíferos , Mutação , Dor/tratamento farmacológico , Transdução de Sinais
4.
Toxicon ; 199: 127-138, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34139257

RESUMO

Cnidarians are equipped with nematocysts, which are specialized organelles used to inoculate venom during prey capturing and defense. Their venoms are rich in toxins and a potential source of bioactive compounds, however, poorly explored so far. In this work, the activity of the methanolic extracts from the hydromedusa Olindias sambaquiensis and the cubozoan jellyfish Chiropsalmus quadrumanus were studied in sympathetic neurotransmission. For that, bisected rat vas deferens - a classic model of sympathetic neurotransmission - were incubated with the extracts for further myographic and histopathological analysis. The O. sambaquiensis extract, at 0.1 µg/mL, facilitated the neurogenic contractions of the noradrenergic-rich epididymal portion, while reducing the noradrenaline (NA) potency, which suggests an interaction with postsynaptic α1-adrenoceptors. On the other hand, a higher concentration (1 µg/mL) leads to time- and frequency-dependent blockade of nerve-evoked contractions without significantly changing the response to exogenous NA. In turn, the C. quadrumanus extract at 0.1 µg/mL induced blockade of nerve-evoked noradrenergic contractions while reducing the potency to exogenous NA. Both extracts did not affect the purinergic neurotransmission or induce muscle damages. Our results demonstrate that O. sambaquiensis and C. quadrumanus extracts significantly interfere with the noradrenergic neurotransmission without altering purinergic response or smooth muscle structure on rat vas deferens. Such results bring to light the pharmacological potential of O. sambaquiensis and C. quadrumanus molecules for therapeutics focusing on noradrenergic neurotransmission.


Assuntos
Hidrozoários , Cifozoários , Animais , Estimulação Elétrica , Masculino , Contração Muscular , Nematocisto , Norepinefrina , Extratos Vegetais , Ratos , Sistema Nervoso Simpático
5.
Int J Nanomedicine ; 16: 3555-3564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079248

RESUMO

PURPOSE: A silver nanoparticle obtained by reducing salts with solid dispersion of curcumin (130 nm, 0.081 mg mL-1) was used to counteract against the toxic - edematogenic, myotoxic, and neurotoxic - effects of Philodryas olfersii venom. METHODS: The edematogenic effect was evaluated by plasma extravasation in rat dorsal skin after injection of 50 µg per site of venom alone or preincubated with 1, 10, and 100 µL of AgNPs; the myotoxicity was evaluated by measuring the creatine kinase released into the organ-bath before the treatment and at the end of each experiment; and neurotoxicity was evaluated in chick biventer cervicis using the conventional myographic technique, face to the exogenous acetylcholine (ACh) and potassium chloride (KCl) added into the bath before the treatment and after each experiment. Preliminarily, a concentration-response curve of AgNPs was carried out to select the concentration to be used for neutralizing assays, which consists of neutralizing the venom-induced neuromuscular paralysis and edema by preincubating AgNPs with venom for 30 min. RESULTS: The P. olfersii venom-induced edema (n=6) and a complete neuromuscular blockade (n=4) that includes the total and unrecovered block of ACh and KCl contractures. AgNPs produced a concentration-dependent decrease the venom-induced edema (n=6) from 223.3% to 134.4% and to 100.5% after 10 and 100 µL AgNPs-preincubation, respectively. The preincubation of venom with AgNPs (1 µL; n=6) was able to maintain 46.5 ± 10.9% of neuromuscular response under indirect stimuli, 39.2 ± 9.7% of extrinsic nicotinic receptors functioning in absence of electrical stimulus and 28.3 ± 8.1% of responsiveness to potassium on the sarcolemmal membrane. The CK release was not affected by any experimental protocol which was like control. CONCLUSION: AgNPs interact with constituents of P. olfersii venom responsible for the edema-forming activity and neuromuscular blockade, but not on the sarcolemma membrane-acting constituents. The protective effect of the studied AgNPs on avian preparation points out to molecular targets as intrinsic and extrinsic nicotinic receptors.


Assuntos
Colubridae , Nanopartículas Metálicas , Prata/química , Prata/farmacologia , Venenos de Serpentes/antagonistas & inibidores , Venenos de Serpentes/toxicidade , Animais , Galinhas , Creatina Quinase/metabolismo , Curcumina/química , Relação Dose-Resposta a Droga , Edema , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Neurotoxinas/antagonistas & inibidores , Neurotoxinas/toxicidade , Nervo Frênico/efeitos dos fármacos , Ratos
6.
Neuropharmacology ; 153: 41-52, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30995441

RESUMO

Scorpionism is frequently accompanied by a massive release of catecholamines and acetylcholine from peripheral nerves caused by neurotoxic peptides present in these venoms, which have high specificity and affinity for ion channels. Tityus bahiensis is the second most medically important scorpion species in Brazil but, despite this, its venom remains scarcely studied, especially with regard to its pharmacology on the peripheral (somatic and autonomic) nervous system. Here, we evaluated the activity of T. bahiensis venom on somatic neurotransmission using myographic (chick and mouse neuromuscular preparations), electrophysiological (MEPP, EPP, resting membrane potentials, perineural waveforms, compound action potentials) and calcium imaging (on DRG neurons and muscle fibres) techniques. Our results show that the major toxic effects of T. bahiensis venom on neuromuscular function are presynaptically driven by the increase in evoked and spontaneous neurotransmitter release. Low venom concentrations prolong the axonal action potential, leading to a longer depolarization of the nerve terminals that enhances neurotransmitter release and facilitates nerve-evoked muscle contraction. The venom also stimulates the spontaneous release of neurotransmitters, probably through partial neuronal depolarization that allows calcium influx. Higher venom concentrations block the generation of action potentials and resulting muscle twitches. These effects of the venom were reversed by low concentrations of TTX, indicating voltage-gated sodium channels as the primary target of the venom toxins. These results suggest that the major neuromuscular toxicity of T. bahiensis venom is probably mediated mainly by α- and ß-toxins interacting with presynaptic TTX-sensitive ion channels on both axons and nerve terminals.


Assuntos
Acetilcolina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Venenos de Escorpião/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Galinhas , Feminino , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Fatores de Tempo
7.
Braz. J. Pharm. Sci. (Online) ; 60: e23366, 2024. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1533980

RESUMO

Abstract Prostate cancer (PCa) is a highly prevalent condition among men worldwide, resulting in reduced quality of life and increased costs to health systems due to hospitalization and death. This study aimed to explore and understand the evolution of PCa in Brazil from 2008 to 2018. Data were obtained from the National Health System Department of Informatics (DATASUS) using code C61 for malignant prostatic neoplasms. We presented the hospitalization and mortality rates in a temporal-, regional- and age-dependent manner. From 2008 to 2018, a year-dependent increase in hospital admissions due to PCa was reported in Brazil, in which the Southeast region showed the highest prevalence. Men aged ≥80 and those 70-79 years old had similar hospitalization rates, followed by men aged 60-69, 50-59, 40-49 and 30-39 years old. Similarly, an increase in deaths due to PCa was reported during this period, with the highest rates seen in the Southeast. Men aged ≥80 years had higher mortality rates, followed by those aged 70-79, 60-69, 50-59, 40-49 and 30-39 years old. The results obtained indicate an age- and region-dependent increase in PCa morbidity and mortality in Brazil overtime and may contribute to the ongoing discussion on the role and future perspective of the health care system in Brazil


Assuntos
Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Próstata/patologia , Mortalidade , Hospitalização/economia , Saúde Pública/classificação , Custos e Análise de Custo/estatística & dados numéricos , Atenção à Saúde/classificação , Hospitalização/estatística & dados numéricos
8.
Toxicon ; 130: 35-43, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28246021

RESUMO

Bothrops fonsecai (B. fonsecai), a pitviper endemic to southeastern Brazil, has a venom mainly composed by snake venom phospholipases (PLA2) and metalloproteases, compounds that could interfere with neuromuscular junction in vitro. In this work, we investigated the role of PLA2 in the myotoxicity and neuromuscular blockade caused by B. fonsecai venom using different procedures frequently associated with PLA2 activity inhibition: 24 °C bath temperature, Ca2+ - Sr2+ replacement and chemical modification with p-bromophenacyl bromide (p-BPB). Mice extensor digitorum longus preparations (EDL) were incubated with usual or modified Tyrode solution (prepared with Ca2+ or Sr2+ respectively) at 24 °C or 37 °C (as controls) and in addition of B. fonsecai venom (100 µg/mL) alone or after its incubation with buffer (24 h, 23 °C) on the absence (alkylation control) and presence of p-BPB; all muscle were processed for histological analysis. The PLA2, proteolytic and amidolytic activities under the same conditions (24 °C or 37 °C, Ca2+ - Sr2+ replacement, absence or presence p-BPB) were also assessed. The B. fonsecai venom caused total neuromuscular blockade after 100 min of incubation, in Ca2+ Tyrode solution at 37 °C (usual conditions); on Sr2+ Tyrode solution (37 °C) the twitch height were 31.7 ± 7.4% of basal, and at 24 °C (Ca2+ Tyrode solution) were 53.6 ± 7.0% of basal. The alkylation of PLA2 with p-BPB promoted a great blockade decrease at 100 min of incubation (88.7 ± 5.7% of basal), but it was also observed on alkylation control preparations (66.2 ± 6.6%). The venom produced 50% of blockade at 40.5 ± 5.9 min, in Ca2+ Tyrode solution at 37 °C. The protocols delayed the time for 50% blockade: 105.7 ± 7.1 min (at 24 °C, in Ca2+ Tyrode solution) and 71.1 ± 9.0 min (at 37 °C, in Sr2+ Tyrode solution). Regarding p-BPB incubation and alkylation control preparations, 50% of blockade was not reached during the 120 min of venom incubation. Regarding to enzymatic activities, the 24 °C protocol reduced not only PLA2 (to 62.3%) but also proteolytic (52.3%) and amidolytic (73.4%) activities, as well as observed on p-BPB alkylation protocol which markedly inhibited all enzymes (<10%). The alkylation control promoted the same proteolytic and amidolytic inhibition but no reduction of PLA2 activity; Ca2+ - Sr2+ replacement reduced only the PLA2 activity (to 15.3%). We observed a strict relation between the inhibition of PLA2 activity and the myotoxicity. On the other hand, this relation was not observed with neuromuscular blockade, suggesting that blockade and muscle damage may not be strictly related. It suggests that the neuromuscular blockade may be induced by non-catalytic PLA2 or other venom components, such as metalloproteinases.


Assuntos
Venenos de Crotalídeos/enzimologia , Músculo Esquelético/efeitos dos fármacos , Fosfolipases A2/farmacologia , Animais , Bothrops , Técnicas In Vitro , Masculino , Camundongos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Bloqueio Neuromuscular , Junção Neuromuscular/efeitos dos fármacos , Fosfolipases A2/isolamento & purificação
9.
Artigo em Inglês | MEDLINE | ID: mdl-27590117

RESUMO

In this work, we examined some biochemical and biological activities of Bothrops fonsecai venom, a pitviper endemic to southeastern Brazil, and assessed their neutralization by commercial bothropic antivenom (CAv). Cross-reactivity of venom with CAv was also assessed by immunoblotting and size-exclusion high performance chromatography (SE-HPLC). Bothrops fonsecai venom had PLA2, proteolytic and esterase activities that were neutralized to varying extents by venom:antivenom ratios of 5:1 and 5:2 (PLA2 and esterase activities) or not significantly by either venom:antivenom ratio (proteolytic activity). The minimum hemorrhagic dose (69.2µg) was totally neutralized by both ratios. Clotting time in rat citrated plasma was 33±10.5s (mean±SD; n=5) and was completely neutralized by a 5:2 ratio. Edema formation was dose-dependent (1-30µg/site) and significantly inhibited by both ratios. Venom (10-300µg/mL) caused neuromuscular blockade in extensor digitorum longus preparations; this blockade was inhibited best by a 5:2 ratio. Venom caused myonecrosis and creatine kinase release in vivo (gastrocnemius muscle) and in vitro (extensor digitorum longus) that was effectively neutralized by both venom:antivenom ratios. Immunoblotting showed that venom components of ~25-100kDa interacted with CAv. SE-HPLC profiles for venom incubated with CAv or specific anti-B. fonsecai antivenom raised in rabbits (SAv) indicated that CAv had a higher binding capacity than SAv, whereas SAv had higher affinity than CAv. These findings indicate that B. fonsecai venom contains various activities that are neutralized to different extents by CAv and suggest that CAv could be used to treat envenoming by B. fonsecai.


Assuntos
Anticorpos Neutralizantes/imunologia , Antídotos , Antivenenos/imunologia , Bothrops/imunologia , Venenos de Crotalídeos/imunologia , Proteínas de Répteis/imunologia , Mordeduras de Serpentes/imunologia , Animais , Anticorpos Neutralizantes/farmacologia , Antídotos/farmacologia , Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Western Blotting , Bothrops/metabolismo , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Reações Cruzadas , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/toxicidade , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/prevenção & controle , Eletroforese em Gel Bidimensional , Esterases/imunologia , Esterases/metabolismo , Fosfolipases A2 do Grupo II/imunologia , Fosfolipases A2 do Grupo II/metabolismo , Hemorragia/sangue , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Masculino , Camundongos , Junção Neuromuscular/efeitos dos fármacos , Peptídeo Hidrolases/imunologia , Peptídeo Hidrolases/metabolismo , Proteólise , Ratos Wistar , Proteínas de Répteis/metabolismo , Proteínas de Répteis/toxicidade , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/enzimologia , Fatores de Tempo
10.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17738

RESUMO

Systemic scorpion envenomation is characterized by massive neurotransmitter release from peripheral nerves mediated primarily by scorpion venoms neurotoxins. Tityus bahiensis is one of the medically most important species in Brazil, but its venom pharmacology, especially regarding to peripheral nervous system, is poorly understood. Here, we evaluated the T. bahiensis venom activity on autonomic (sympathetic) neurotransmission by using a variety of approaches, including vas deferens twitch-tension recordings, electrophysiological measurements (resting membrane potentials, spontaneous excitatory junctional potentials and whole-cell patch-clamp), calcium imaging and histomorphological analysis. Low concentrations of venom (=?3 µg/mL) facilitated the electrically stimulated vas deferens contractions without affecting postsynaptic receptors or damaging the smooth muscle cells. Transient TTX-sensitive sustained contractions and resting membrane depolarization were mediated mainly by massive spontaneous ATP release. High venom concentrations (=?10 µg/mL) blocked the muscle contractions and induced membrane depolarization. In neuronal cells (ND7-23wt), the venom increased the peak sodium current, modified the current-voltage relationship by left-shifting the Nav-channel activation curve, thereby facilitating the opening of these channels. The venom also caused a time-dependent increase in neuronal calcium influx. These results indicate that the sympathetic hyperstimulation observed in systemic envenomation is presynaptically driven, probably through the interaction of a- and ß-toxins with neuronal sodium channels.

11.
Toxicon, v. 199, p. 127-138, ago. 2021
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-3864

RESUMO

Cnidarians are equipped with nematocysts, which are specialized organelles used to inoculate venom during prey capturing and defense. Their venoms are rich in toxins and a potential source of bioactive compounds, however, poorly explored so far. In this work, the activity of the methanolic extracts from the hydromedusa Olindias sambaquiensis and the cubozoan jellyfish Chiropsalmus quadrumanus were studied in sympathetic neurotransmission. For that, bisected rat vas deferens - a classic model of sympathetic neurotransmission - were incubated with the extracts for further myographic and histopathological analysis. The O. sambaquiensis extract, at 0.1 μg/mL, facilitated the neurogenic contractions of the noradrenergic-rich epididymal portion, while reducing the noradrenaline (NA) potency, which suggests an interaction with postsynaptic α1-adrenoceptors. On the other hand, a higher concentration (1 μg/mL) leads to time- and frequency-dependent blockade of nerve-evoked contractions without significantly changing the response to exogenous NA. In turn, the C. quadrumanus extract at 0.1 μg/mL induced blockade of nerve-evoked noradrenergic contractions while reducing the potency to exogenous NA. Both extracts did not affect the purinergic neurotransmission or induce muscle damages. Our results demonstrate that O. sambaquiensis and C. quadrumanus extracts significantly interfere with the noradrenergic neurotransmission without altering purinergic response or smooth muscle structure on rat vas deferens. Such results bring to light the pharmacological potential of O. sambaquiensis and C. quadrumanus molecules for therapeutics focusing on noradrenergic neurotransmission.

12.
Neuropharmacology ; 153: p. 41-52, 2019.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib15984

RESUMO

Scorpionism is frequently accompanied by a massive release of catecholamines and acetylcholine from peripheral nerves caused by neurotoxic peptides present in these venoms, which have high specificity and affinity for ion channels. Tityus bahiensis is the second most medically important scorpion species in Brazil but, despite this, its venom remains scarcely studied, especially with regard to its pharmacology on the peripheral (somatic and autonomic) nervous system. Here, we evaluated the activity of T. bahiensis venom on somatic neurotransmission using myographic (chick and mouse neuromuscular preparations), electrophysiological (MEPP, EPP, resting membrane potentials, perineural waveforms, compound action potentials) and calcium imaging (on DRG neurons and muscle fibres) techniques. Our results show that the major toxic effects of T. bahiensis venom on neuromuscular function are presynaptically driven by the increase in evoked and spontaneous neurotransmitter release. Low venom concentrations prolong the axonal action potential, leading to a longer depolarization of the nerve terminals that enhances neurotransmitter release and facilitates nerve-evoked muscle contraction. The venom also stimulates the spontaneous release of neurotransmitters, probably through partial neuronal depolarization that allows calcium influx. Higher venom concentrations block the generation of action potentials and resulting muscle twitches. These effects of the venom were reversed by low concentrations of TTX, indicating voltage-gated sodium channels as the primary target of the venom toxins. These results suggest that the major neuromuscular toxicity of T. bahiensis venom is probably mediated mainly by a- and ß-toxins interacting with presynaptic TTX-sensitive ion channels on both axons and nerve terminals.

13.
Arch Toxicol, v. 94, p. 3315-3327, jun. 2020
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-3071

RESUMO

Systemic scorpion envenomation is characterized by massive neurotransmitter release from peripheral nerves mediated primarily by scorpion venoms neurotoxins. Tityus bahiensis is one of the medically most important species in Brazil, but its venom pharmacology, especially regarding to peripheral nervous system, is poorly understood. Here, we evaluated the T. bahiensis venom activity on autonomic (sympathetic) neurotransmission by using a variety of approaches, including vas deferens twitch-tension recordings, electrophysiological measurements (resting membrane potentials, spontaneous excitatory junctional potentials and whole-cell patch-clamp), calcium imaging and histomorphological analysis. Low concentrations of venom (= 3 µg/mL) facilitated the electrically stimulated vas deferens contractions without affecting postsynaptic receptors or damaging the smooth muscle cells. Transient TTX-sensitive sustained contractions and resting membrane depolarization were mediated mainly by massive spontaneous ATP release. High venom concentrations (= 10 µg/mL) blocked the muscle contractions and induced membrane depolarization. In neuronal cells (ND7-23wt), the venom increased the peak sodium current, modified the current-voltage relationship by left-shifting the Nav-channel activation curve, thereby facilitating the opening of these channels. The venom also caused a time-dependent increase in neuronal calcium influx. These results indicate that the sympathetic hyperstimulation observed in systemic envenomation is presynaptically driven, probably through the interaction of a- and ß-toxins with neuronal sodium channels.

14.
Neuropharmacology, v. 153, p. 41-52, jul. 2019
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2742

RESUMO

Scorpionism is frequently accompanied by a massive release of catecholamines and acetylcholine from peripheral nerves caused by neurotoxic peptides present in these venoms, which have high specificity and affinity for ion channels. Tityus bahiensis is the second most medically important scorpion species in Brazil but, despite this, its venom remains scarcely studied, especially with regard to its pharmacology on the peripheral (somatic and autonomic) nervous system. Here, we evaluated the activity of T. bahiensis venom on somatic neurotransmission using myographic (chick and mouse neuromuscular preparations), electrophysiological (MEPP, EPP, resting membrane potentials, perineural waveforms, compound action potentials) and calcium imaging (on DRG neurons and muscle fibres) techniques. Our results show that the major toxic effects of T. bahiensis venom on neuromuscular function are presynaptically driven by the increase in evoked and spontaneous neurotransmitter release. Low venom concentrations prolong the axonal action potential, leading to a longer depolarization of the nerve terminals that enhances neurotransmitter release and facilitates nerve-evoked muscle contraction. The venom also stimulates the spontaneous release of neurotransmitters, probably through partial neuronal depolarization that allows calcium influx. Higher venom concentrations block the generation of action potentials and resulting muscle twitches. These effects of the venom were reversed by low concentrations of TTX, indicating voltage-gated sodium channels as the primary target of the venom toxins. These results suggest that the major neuromuscular toxicity of T. bahiensis venom is probably mediated mainly by a- and ß-toxins interacting with presynaptic TTX-sensitive ion channels on both axons and nerve terminals.

15.
Toxicon ; 60(4): 614-22, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22677807

RESUMO

Philodryas olfersii is responsible for most colubrid snakebites in Brazil. In this work, we examined the ability of an ethanolic extract from Mikania laevigata (guaco) leaves to protect against the in vitro neuromuscular activity of P. olfersii venom in mouse phrenic nerve-diaphragm (PND) and chick biventer cervicis (BC) preparations. M. laevigata extract caused moderate twitch-tension facilitation at low concentrations (107.4 ± 6.2% with 20 µl/ml and 118.9 ± 9.3% with 40 µl/ml in PND, and 120.7 ± 7.7% with 40 µl/ml and 114.5 ± 4.4% with 50 µl/ml in BC after 120 min; n = 4-6, mean ± SEM). In PND, the ethanol alone (40 µl/ml, n = 4) did not change the twitch-tension when compared with control. However, in BC, the ethanol produced a higher facilitation when compared to control. At higher concentrations (>50 µl/ml) the extract caused total and reversible blockade in both preparations. Venom (50 µg/ml) caused partial blockade in PND (58.5 ± 12%, n = 4) and almost total blockade in BC (93.5 ± 2.2%, n = 4). Pretreatment of the preparations with extract (40 µl/ml) for 30 min before incubation with venom (50 µg/ml) completely protected PND from neuromuscular blockade and delayed the blockade in BC. The extract alone caused only mild morphological alterations (12.5 ± 0.5% and 10.9 ± 2.3% fiber damage in PND and BC, respectively, compared to 2.3 ± 0.3% and 3 ± 0 in controls; n = 3), with no increase in expression of the inflammatory cytokines TNFα and IFNγ. The ethanol alone also caused slight muscle damage: 4.3 ± 2.4% in PND and 6.7 ± 3.3% in BC (both n = 3) and little or no TNFα and IFNγ expression in both preparations as observed in control. Venom (50 µg/ml) caused 53.5 ± 8.5% and 55.8 ± 4.3% fiber damage in PND and BC, respectively; (n = 3, p < 0.05 vs. controls) and enhanced expression of TNFα and IFNγ. Pretreatment of the preparations with extract protected against venom-induced muscle damage by 80.3 and 60.4 in PND and BC, respectively, and prevented TNFα and IFNγ expression. These results indicate that the M. laevigata extract protected nerve-muscle preparations against the myotoxic, neurotoxic and inflammatory effects of P. olfersii venom.


Assuntos
Antídotos/farmacologia , Mikania/química , Bloqueadores Neuromusculares/toxicidade , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Venenos de Serpentes/toxicidade , Animais , Galinhas , Colubridae/metabolismo , Diafragma/efeitos dos fármacos , Masculino , Camundongos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Bloqueio Neuromuscular , Bloqueadores Neuromusculares/antagonistas & inibidores , Junção Neuromuscular/efeitos dos fármacos , Nervo Frênico/efeitos dos fármacos , Venenos de Serpentes/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa