Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neuroinflammation ; 18(1): 162, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281564

RESUMO

BACKGROUND: Colony-stimulating factor 1 (CSF1) expression in the central nervous system (CNS) increases in response to a variety of stimuli, and CSF1 is overexpressed in many CNS diseases. In young adult mice, we previously showed that CSF1 overexpression in the CNS caused the proliferation of IBA1+ microglia without promoting the expression of M2 polarization markers. METHODS: Immunohistochemical and molecular analyses were performed to further examine the impact of CSF1 overexpression on glia in both young and aged mice. RESULTS: As CSF1 overexpressing mice age, IBA1+ cell numbers are constrained by a decline in proliferation rate. Compared to controls, there were no differences in expression of the M2 markers ARG1 and MRC1 (CD206) in CSF1 overexpressing mice of any age, indicating that even prolonged exposure to increased CSF1 does not impact M2 polarization status in vivo. Moreover, RNA-sequencing confirmed the lack of increased expression of markers of M2 polarization in microglia exposed to CSF1 overexpression but did reveal changes in expression of other immune-related genes. Although treatment with inhibitors of the CSF1 receptor, CSF1R, has been shown to impact other glia, no increased expression of oligodendrocyte lineage or astrocyte markers was observed in CSF1 overexpressing mice. CONCLUSIONS: Our study indicates that microglia are the primary glial lineage impacted by CSF1 overexpression in the CNS and that microglia ultimately adapt to the presence of the CSF1 mitogenic signal.


Assuntos
Linhagem da Célula , Fator Estimulador de Colônias de Macrófagos/metabolismo , Neuroglia/metabolismo , Animais , Arginase/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Gliose , Imuno-Histoquímica , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Neuroglia/citologia , Receptores Imunológicos/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
2.
J Neuroinflammation ; 18(1): 67, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33685480

RESUMO

BACKGROUND: Alexander disease (AxD) is a rare neurodegenerative disorder that is caused by dominant mutations in the gene encoding glial fibrillary acidic protein (GFAP), an intermediate filament that is primarily expressed by astrocytes. In AxD, mutant GFAP in combination with increased GFAP expression result in astrocyte dysfunction and the accumulation of Rosenthal fibers. A neuroinflammatory environment consisting primarily of macrophage lineage cells has been observed in AxD patients and mouse models. METHODS: To examine if macrophage lineage cells could serve as a therapeutic target in AxD, GFAP knock-in mutant AxD model mice were treated with a colony-stimulating factor 1 receptor (CSF1R) inhibitor, pexidartinib. The effects of pexidartinib treatment on disease phenotypes were assessed. RESULTS: In AxD model mice, pexidartinib administration depleted macrophages in the CNS and caused elevation of GFAP transcript and protein levels with minimal impacts on other phenotypes including body weight, stress response activation, chemokine/cytokine expression, and T cell infiltration. CONCLUSIONS: Together, these results highlight the complicated role that macrophages can play in neurological diseases and do not support the use of pexidartinib as a therapy for AxD.


Assuntos
Doença de Alexander , Aminopiridinas/farmacologia , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Pirróis/farmacologia , Doença de Alexander/metabolismo , Doença de Alexander/patologia , Animais , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
3.
Nature ; 486(7402): 266-70, 2012 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-22699621

RESUMO

Pancreatic ductal adenocarcinoma (PDA) remains a lethal malignancy despite much progress concerning its molecular characterization. PDA tumours harbour four signature somatic mutations in addition to numerous lower frequency genetic events of uncertain significance. Here we use Sleeping Beauty (SB) transposon-mediated insertional mutagenesis in a mouse model of pancreatic ductal preneoplasia to identify genes that cooperate with oncogenic Kras(G12D) to accelerate tumorigenesis and promote progression. Our screen revealed new candidate genes for PDA and confirmed the importance of many genes and pathways previously implicated in human PDA. The most commonly mutated gene was the X-linked deubiquitinase Usp9x, which was inactivated in over 50% of the tumours. Although previous work had attributed a pro-survival role to USP9X in human neoplasia, we found instead that loss of Usp9x enhances transformation and protects pancreatic cancer cells from anoikis. Clinically, low USP9X protein and messenger RNA expression in PDA correlates with poor survival after surgery, and USP9X levels are inversely associated with metastatic burden in advanced disease. Furthermore, chromatin modulation with trichostatin A or 5-aza-2'-deoxycytidine elevates USP9X expression in human PDA cell lines, indicating a clinical approach for certain patients. The conditional deletion of Usp9x cooperated with Kras(G12D) to accelerate pancreatic tumorigenesis in mice, validating their genetic interaction. We propose that USP9X is a major tumour suppressor gene with prognostic and therapeutic relevance in PDA.


Assuntos
Carcinoma Ductal Pancreático/enzimologia , Neoplasias Pancreáticas/enzimologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Animais , Anoikis/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Endopeptidases , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células U937
4.
Nature ; 482(7386): 529-33, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22343890

RESUMO

Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.


Assuntos
Evolução Clonal/genética , Meduloblastoma/genética , Meduloblastoma/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Animais , Ilhas de CpG/genética , Metilação de DNA , Elementos de DNA Transponíveis/genética , Modelos Animais de Doenças , Genes p53/genética , Mutação em Linhagem Germinativa/genética , Humanos , Síndrome de Li-Fraumeni/complicações , Síndrome de Li-Fraumeni/genética , Meduloblastoma/complicações , Camundongos , Mutagênese Insercional , Taxa de Sobrevida
5.
PLoS Genet ; 10(6): e1004299, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24901438

RESUMO

Homologous recombination (HR) is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26 Direct Repeat-GFP (RaDR-GFP) mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals.


Assuntos
Envelhecimento , Reparo do DNA/genética , Proteínas de Fluorescência Verde/genética , Recombinação Homóloga/genética , RNA não Traduzido/genética , Fatores Etários , Animais , Proteínas de Bactérias/genética , Encéfalo/citologia , Colo/citologia , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica/genética , Fígado/citologia , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pâncreas/citologia
6.
PLoS Genet ; 8(11): e1003034, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133403

RESUMO

Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4(D573H)). MCM4 is part of the heterohexameric complex of MCM2-7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4(D573H) to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities.


Assuntos
Transformação Celular Neoplásica/genética , Aberrações Cromossômicas , DNA Helicases/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Alelos , Animais , Instabilidade Cromossômica , DNA Helicases/metabolismo , Replicação do DNA , Modelos Animais de Doenças , Genes Dominantes , Humanos , Camundongos , Componente 4 do Complexo de Manutenção de Minicromossomo , Mutação , Receptor Notch1/genética , Receptor Notch1/metabolismo , Reticulócitos/citologia , Reticulócitos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Glia ; 62(12): 1955-67, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25042473

RESUMO

Macrophage colony stimulating factor (CSF1) is a cytokine that is upregulated in several diseases of the central nervous system (CNS). To examine the effects of CSF1 overexpression on microglia, transgenic mice that overexpress CSF1 in the glial fibrillary acidic protein (GFAP) compartment were generated. CSF1 overexpressing mice have increased microglial proliferation and increased microglial numbers compared with controls. Treatment with PLX3397, a small molecule inhibitor of the CSF1 receptor CSF1R and related kinases, decreases microglial numbers by promoting microglial apoptosis in both CSF1 overexpressing and control mice. Microglia in CSF1 overexpressing mice exhibit gene expression profiles indicating that they are not basally M1 or M2 polarized, but they do have defects in inducing expression of certain genes in response to the inflammatory stimulus lipopolysaccharide. These results indicate that the CSF1 overexpression observed in CNS pathologies likely has pleiotropic influences on microglia. Furthermore, small molecule inhibition of CSF1R has the potential to reverse CSF1-driven microglial accumulation that is frequently observed in CNS pathologies, but can also promote apoptosis of normal microglia.


Assuntos
Pleiotropia Genética/fisiologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Microglia/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Tronco Encefálico/citologia , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cerebelo/citologia , Citocinas/genética , Citocinas/metabolismo , Pleiotropia Genética/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Marcação In Situ das Extremidades Cortadas , Indóis/farmacologia , Lipopolissacarídeos/farmacologia , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , RNA Mensageiro/metabolismo , Sulfonamidas/farmacologia
8.
Blood ; 119(19): 4512-23, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22427200

RESUMO

Patients with a t(9;11) translocation (MLL-AF9) develop acute myeloid leukemia (AML), and while in mice the expression of this fusion oncogene also results in the development of myeloid leukemia, it is with long latency. To identify mutations that cooperate with Mll-AF9, we infected neonatal wild-type (WT) or Mll-AF9 mice with a murine leukemia virus (MuLV). MuLV-infected Mll-AF9 mice succumbed to disease significantly faster than controls presenting predominantly with myeloid leukemia while infected WT animals developed predominantly lymphoid leukemia. We identified 88 candidate cancer genes near common sites of proviral insertion. Analysis of transcript levels revealed significantly elevated expression of Mn1, and a trend toward increased expression of Bcl11a and Fosb in Mll-AF9 murine leukemia samples with proviral insertions proximal to these genes. Accordingly, FOSB and BCL11A were also overexpressed in human AML harboring MLL gene translocations. FOSB was revealed to be essential for growth in mouse and human myeloid leukemia cells using shRNA lentiviral vectors in vitro. Importantly, MN1 cooperated with Mll-AF9 in leukemogenesis in an in vivo BM viral transduction and transplantation assay. Together, our data identified genes that define transcription factor networks and important genetic pathways acting during progression of leukemia induced by MLL fusion oncogenes.


Assuntos
Transformação Celular Neoplásica/genética , Redes Reguladoras de Genes/genética , Leucemia/genética , Mutagênese Insercional , Proteína de Leucina Linfoide-Mieloide/fisiologia , Proteínas de Fusão Oncogênica/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Análise Mutacional de DNA/métodos , Modelos Animais de Doenças , Células HEK293 , Humanos , Leucemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Insercional/fisiologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Células U937
9.
Am J Clin Exp Urol ; 11(6): 452-466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148937

RESUMO

Fibroblast growth factor (FGF) is a secreted ligand that is widely expressed in embryonic tissues but its expression decreases with age. In the developing prostate, FGF5 has been proposed to interact with the Hedgehog (Hh) signaling pathway to guide mitogenic processes. In the adult prostate, the FGF/FGFR signaling axis has been implicated in prostate carcinogenesis, but focused studies on FGF5 functions in the prostate are limited. Functional studies completed in other cancer models point towards FGF5 overexpression as an oncogenic driver associated with stemness, metastatic potential, proliferative capacity, and increased tumor grade. In this review, we explore the significance of FGF5 as a therapeutic target in prostate cancer (PCa) and other malignancies; and we introduce a potential route of investigation to link FGF5 to benign prostatic hyperplasia (BPH). PCa and BPH are two primary contributors to the disease burden of the aging male population and have severe implications on quality of life, psychological wellbeing, and survival. The development of new FGF5 inhibitors could potentially alleviate the health burden of PCa and BPH in the aging male population.

10.
Nature ; 436(7048): 272-6, 2005 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16015333

RESUMO

Retroviruses, acting as somatic cell insertional mutagens, have been widely used to identify cancer genes in the haematopoietic system and mammary gland. An insertional mutagen for use in other mouse somatic cells would facilitate the identification of genes involved in tumour formation in a wider variety of tissues. Here we report the ability of the Sleeping Beauty transposon to act as a somatic insertional mutagen to identify genes involved in solid tumour formation. A Sleeping Beauty transposon, engineered to elicit loss-of-function or gain-of-function mutations, transposed in all somatic tissues tested and accelerated tumour formation in mice predisposed to cancer. Cloning transposon insertion sites from these tumours revealed the presence of common integration sites, at known and candidate cancer genes, similar to those observed in retroviral mutagenesis screens. Sleeping Beauty is a new tool for unbiased, forward genetic screens for cancer genes in vivo.


Assuntos
Testes Genéticos/métodos , Mutagênese Insercional/genética , Neoplasias/genética , Oncogenes/genética , Animais , Elementos de DNA Transponíveis/genética , Vetores Genéticos/genética , Camundongos , Camundongos Transgênicos , Células NIH 3T3 , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sarcoma/genética
11.
Curr Opin Genet Dev ; 16(1): 23-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16326095

RESUMO

Methods for cancer gene discovery include identification of viral oncogenes, identification of genes associated with recurrent chromosomal aberrations, and screens for genes capable of the transformation of cells in culture. In recent years, the completed genome sequence of human and model organisms has markedly enhanced cancer gene identification. Whole genome, high-throughput screens have been facilitated by the advent of new technologies such as murine leukemia virus-based mutagenesis, Sleeping Beauty-based mutagenesis, RNA interference, exon re-sequencing, and high-resolution methods for detecting chromosomal amplifications and deletions; these, in turn, have led to the identification of novel tumor suppressors and oncogenes. The identification of genes that are altered by mutation or expression and which are directly involved in tumor initiation and maintenance will be instrumental for understanding cancer phenotypic variation and for identifying crucial therapeutic targets.


Assuntos
Oncogenes , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Viral/genética , Elementos de DNA Transponíveis/genética , Éxons , Amplificação de Genes , Deleção de Genes , Humanos , Modelos Genéticos , Mutagênicos , Translocação Genética
12.
PLoS Genet ; 2(9): e156, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-17009875

RESUMO

Previous studies of the Sleeping Beauty (SB) transposon system, as an insertional mutagen in the germline of mice, have used reverse genetic approaches. These studies have led to its proposed use for regional saturation mutagenesis by taking a forward-genetic approach. Thus, we used the SB system to mutate a region of mouse Chromosome 11 in a forward-genetic screen for recessive lethal and viable phenotypes. This work represents the first reported use of an insertional mutagen in a phenotype-driven approach. The phenotype-driven approach was successful in both recovering visible and behavioral mutants, including dominant limb and recessive behavioral phenotypes, and allowing for the rapid identification of candidate gene disruptions. In addition, a high frequency of recessive lethal mutations arose as a result of genomic rearrangements near the site of transposition, resulting from transposon mobilization. The results suggest that the SB system could be used in a forward-genetic approach to recover interesting phenotypes, but that local chromosomal rearrangements should be anticipated in conjunction with single-copy, local transposon insertions in chromosomes. Additionally, these mice may serve as a model for chromosome rearrangements caused by transposable elements during the evolution of vertebrate genomes.


Assuntos
Elementos de DNA Transponíveis/fisiologia , Mutagênese Insercional , Mutação , Animais , Animais Recém-Nascidos , Aberrações Cromossômicas , Cromossomos , Cromossomos de Mamíferos , Cruzamentos Genéticos , DNA Concatenado/química , Genes Dominantes , Genes Recessivos , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Linhagem , Fenótipo , Sindactilia/genética , Transposases/genética
13.
Methods Mol Biol ; 435: 95-108, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18370070

RESUMO

Understanding the genetic basis for tumor formation is crucial for treating cancer. Forward genetic screens using insertional mutagenesis technologies have identified many important tumor suppressor genes and oncogenes in mouse models of human cancer. Traditionally, retroviruses have been used for this purpose, allowing the identification of genes that can cause various forms of leukemia or lymphoma with murine leukemia viruses or mammary cancer with mouse mammary tumor viruses. Recently, the Sleeping Beauty transposon system has emerged as a tool for cancer gene discovery in mouse models of human cancer. Transposons mobilized in the mouse soma can insertionally mutate cancer genes, and the transposon itself serves as a molecular "tag," which facilitates candidate cancer gene identification. We provide an overview of some general issues related to use of Sleeping Beauty for cancer genetic studies and present here the polymerase chain reaction-based method for cloning transposon-tagged sequences from tumors.


Assuntos
Elementos de DNA Transponíveis/genética , Mutagênese Insercional/métodos , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , Genes Supressores de Tumor , Humanos , Camundongos , Neoplasias Experimentais/etiologia , Neoplasias Experimentais/genética , Oncogenes , Reação em Cadeia da Polimerase , Transposases/genética
14.
Nucleic Acids Res ; 34(9): 2803-11, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16717285

RESUMO

Mobile genetic elements with the ability to integrate genetic information into chromosomes can cause disease over short periods of time and shape genomes over eons. These elements can be used for functional genomics, gene transfer and human gene therapy. However, their integration-site preferences, which are critically important for these uses, are poorly understood. We analyzed the insertion sites of several transposons and retroviruses to detect patterns of integration that might be useful for prediction of preferred integration sites. Initially we found that a mathematical description of DNA-deformability, called V(step), could be used to distinguish preferential integration sites for Sleeping Beauty (SB) transposons into a particular 100 bp region of a plasmid [G. Liu, A. M. Geurts, K. Yae, A. R. Srinivassan, S. C. Fahrenkrug, D. A. Largaespada,J. Takeda, K. Horie, W. K. Olson and P. B. Hackett (2005) J. Mol. Biol., 346, 161-173 ]. Based on these findings, we extended our examination of integration of SB transposons into whole plasmids and chromosomal DNA. To accommodate sequences up to 3 Mb for these analyses, we developed an automated method, ProTIS, that can generate profiles of predicted integration events. However, a similar approach did not reveal any structural pattern of DNA that could be used to predict favored integration sites for other transposons as well as retroviruses and lentiviruses due to a limitation of available data sets. Nonetheless, ProTIS has the utility for predicting likely SB transposon integration sites in investigator-selected regions of genomes and our general strategy may be useful for other mobile elements once a sufficiently high density of sites in a single region are obtained. ProTIS analysis can be useful for functional genomic, gene transfer and human gene therapy applications using the SB system.


Assuntos
Algoritmos , Cromossomos de Mamíferos/química , Elementos de DNA Transponíveis , Genômica/métodos , Animais , Marcação de Genes , Vetores Genéticos , Íntrons , Camundongos , Proteínas Proto-Oncogênicas B-raf/genética , Retroviridae/genética
15.
Cancer Res ; 65(21): 9607-10, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16266976

RESUMO

Retroviruses are powerful insertional somatic mutagens that have been used for many landmark discoveries of cancer genes in model organisms. However, their use as a cancer gene discovery tool has been limited to only a few tissues, mainly the hematopoietic system and mammary gland. Recently, the Sleeping Beauty (SB) transposon system was shown to be useful for random somatic cell mutagenesis in mice, allowing the induction or acceleration of tumor formation both in the hematopoietic system and in sarcomas. In these tumors, SB transposons repeatedly "tagged" specific genes, both known and new cancer genes. These results indicate that the SB system has great potential both for generating specific mouse models of human cancer and for cancer gene discovery in a wide variety of tissues.


Assuntos
Elementos de DNA Transponíveis/genética , Genes Neoplásicos/genética , Neoplasias/genética , Animais , Genoma , Humanos
16.
Cancer Res ; 76(9): 2552-60, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27013192

RESUMO

Current therapies for high-grade gliomas extend survival only modestly. The glioma microenvironment, including glioma-associated microglia/macrophages (GAM), is a potential therapeutic target. The microglia/macrophage cytokine CSF1 and its receptor CSF1R are overexpressed in human high-grade gliomas. To determine whether the other known CSF1R ligand IL34 is expressed in gliomas, we examined expression array data of human high-grade gliomas and performed RT-PCR on glioblastoma sphere-forming cell lines (GSC). Expression microarray analyses indicated that CSF1, but not IL34, is frequently overexpressed in human tumors. We found that while GSCs did express CSF1, most GSC lines did not express detectable levels of IL34 mRNA. We therefore studied the impact of modulating CSF1 levels on gliomagenesis in the context of the GFAP-V12Ha-ras-IRESLacZ (Ras*) model. Csf1 deficiency deterred glioma formation in the Ras* model, whereas CSF1 transgenic overexpression decreased the survival of Ras* mice and promoted the formation of high-grade gliomas. Conversely, CSF1 overexpression increased GAM density, but did not impact GAM polarization state. Regardless of CSF1 expression status, most GAMs were negative for the M2 polarization markers ARG1 and CD206; when present, ARG1(+) and CD206(+) cells were found in regions of peripheral immune cell invasion. Therefore, our findings indicate that CSF1 signaling is oncogenic during gliomagenesis through a mechanism distinct from modulating GAM polarization status. Cancer Res; 76(9); 2552-60. ©2016 AACR.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Fator Estimulador de Colônias de Macrófagos/biossíntese , Animais , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Macrófagos/citologia , Camundongos , Camundongos Transgênicos , Microglia/citologia , Microscopia Confocal , Reação em Cadeia da Polimerase , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Análise Serial de Tecidos , Regulação para Cima
17.
Genetics ; 167(2): 783-96, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15238528

RESUMO

Hedgehog (Hh) signaling is crucial for the development of many tissues, and altered Hh signal transduction can result in cancer. The Drosophila Costal1 (Cos1) and costal2 (cos2) genes have been implicated in Hh signaling. cos2 encodes a kinesin-related molecule, one component of a cytoplasmic complex of Hh signal transducers. Mutations in Cos1 enhance loss-of-function cos2 mutations, but the molecular nature of Cos1 has been unknown. We found that previously identified alleles of Cos1 actually map to two separate loci. Four alleles of Cos1 appear to be dominant-negative mutations of a catalytic subunit of protein kinase A (pka-C1) and the fifth allele, Cos1(A1), is a gain-of-function allele of the PKA regulatory subunit pka-RII. PKA-RII protein levels are higher in Cos1(A1) mutants than in wild type. Overexpression of wild-type pka-RII phenocopies Cos1 mutants. PKA activity is aberrant in Cos1(A1) mutants. PKA-RII is uniformly overproduced in the wing imaginal disc in Cos1(A1) mutants, but only certain cells respond by activating the transcription factor Ci and Hh target gene transcription. This work shows that overexpression of a wild-type regulatory subunit of PKA is sufficient to activate Hh target gene transcription.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Drosophila/genética , Drosophila/genética , Cinesinas/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Primers do DNA , Drosophila/enzimologia , Proteínas Hedgehog , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Recombinação Genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Asas de Animais/anatomia & histologia
18.
J Neuroimmunol ; 278: 280-8, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25468773

RESUMO

During postnatal development, microglia, CNS resident innate immune cells, are essential for synaptic pruning, neuronal apoptosis and remodeling. During this period microglia undergo morphological and phenotypic transformations; however, little is known about how microglial number and density is regulated during postnatal CNS development. We found that after an initial increase during the first 14 postnatal days, microglial numbers in mouse brain began declining in the third postnatal week and were reduced by 50% by 6weeks of age; these "adult" levels were maintained until at least 9months of age. Microglial CD11b levels increased, whereas CD45 and ER-MP58 declined between P10 and adulthood, consistent with a maturing microglial phenotype. Our data indicate that both increased microglial apoptosis and a decreased proliferative capacity contribute to the developmental reduction in microglial numbers. We found no correlation between developmental reductions in microglial numbers and brain mRNA levels of Cd200, Cx3Cl1, M-Csf or Il-34. We tested the ability of M-Csf-overexpression, a key growth factor promoting microglial proliferation and survival, to prevent microglial loss in the third postnatal week. Mice overexpressing M-Csf in astrocytes had higher numbers of microglia at all ages tested. However, the developmental decline in microglial numbers still occurred, suggesting that chronically elevated M-CSF is unable to overcome the developmental decrease in microglial numbers. Whereas the identity of the factor(s) regulating microglial number and density during development remains to be determined, it is likely that microglia respond to a "maturation" signal since the reduction in microglial numbers coincides with CNS maturation.


Assuntos
Envelhecimento/fisiologia , Apoptose/fisiologia , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Citocinas/metabolismo , Microglia/fisiologia , Animais , Animais Recém-Nascidos , Antígeno CD11b/metabolismo , Proliferação de Células , Citocinas/genética , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos ICR
19.
PLoS One ; 9(11): e113489, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25423036

RESUMO

Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma.


Assuntos
Neoplasias Encefálicas/genética , Elementos de DNA Transponíveis , Glioma/genética , Animais , Sequência de Bases , Primers do DNA , Proteína Glial Fibrilar Ácida/genética , Camundongos , Reação em Cadeia da Polimerase , Transposases/genética
20.
Cancer Res ; 70(9): 3557-65, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20388773

RESUMO

The Sleeping Beauty (SB) transposon system has been used as an insertional mutagenesis tool to identify novel cancer genes. To identify glioma-associated genes, we evaluated tumor formation in the brain tissue from 117 transgenic mice that had undergone constitutive SB-mediated transposition. Upon analysis, 21 samples (18%) contained neoplastic tissue with features of high-grade astrocytomas. These tumors expressed glial markers and were histologically similar to human glioma. Genomic DNA from SB-induced astrocytoma tissue was extracted and transposon insertion sites were identified. Insertions in the growth factor gene Csf1 were found in 13 of the 21 tumors (62%), clustered in introns 5 and 8. Using reverse transcription-PCR, we documented increased Csf1 RNAs in tumor versus adjacent normal tissue, with the identification of transposon-terminated Csf1 mRNAs in astrocytomas with SB insertions in intron 8. Analysis of human glioblastomas revealed increased levels of Csf1 RNA and protein. Together, these results indicate that SB-insertional mutagenesis can identify high-grade astrocytoma-associated genes and they imply an important role for CSF1 in the development of these tumors.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Elementos de DNA Transponíveis , Fator Estimulador de Colônias de Macrófagos/genética , Mutagênese Insercional/métodos , Transposases/genética , Animais , Astrocitoma/metabolismo , Astrocitoma/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Fator Estimulador de Colônias de Macrófagos/biossíntese , Camundongos , Camundongos Transgênicos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/biossíntese , Receptor de Fator Estimulador de Colônias de Macrófagos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa