Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(38): 13483-13486, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28885845

RESUMO

Biological tissue exhibits an absorbance minimum in the near-infrared between 700 and 900 nm that permits deep penetration of light. Molecules that undergo photoisomerization in this bio-optical window are highly desirable as core structures for the development of photopharmaceuticals and as components of chemical-biological tools. We report the systematic design, synthesis, and testing of an azobenzene derivative tailored to undergo single-photon photoswitching with near-infrared light under physiological conditions. A fused dioxane ring and a methoxy substituent were used to place oxygen atoms in all four ortho positions, as well as two meta positions, relative to the azobenzene N═N double bond. This substitution pattern, together with a para pyrrolidine group, raises the pKa of the molecule so that it is protonated at physiological pH and absorbs at wavelengths >700 nm. This azobenzene derivative, termed DOM-azo, is stable for months in neutral aqueous solutions, undergoes trans-to-cis photoswitching with 720 nm light, and thermally reverts to the stable trans isomer with a half-life near 1 s.


Assuntos
Compostos Azo/química , Compostos Azo/efeitos da radiação , Raios Infravermelhos , Processos Fotoquímicos/efeitos da radiação , Concentração de Íons de Hidrogênio , Isomerismo , Prótons , Pirrolidinas/química
2.
ACS Med Chem Lett ; 6(9): 982-6, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26396684

RESUMO

PTP1B is a master regulator in the insulin and leptin metabolic pathways. Hyper-activated PTP1B results in insulin resistance and is viewed as a key factor in the onset of type II diabetes and obesity. Moreover, inhibition of PTP1B expression in cancer cells dramatically inhibits cell growth in vitro and in vivo. Herein, we report the computationally guided optimization of a salicylic acid-based PTP1B inhibitor 6, identifying new and more potent bidentate PTP1B inhibitors, such as 20h, which exhibited a > 4-fold improvement in activity. In CHO-IR cells, 20f, 20h, and 20j suppressed PTP1B activity and restored insulin receptor phosphorylation levels. Notably, 20f, which displayed a 5-fold selectivity for PTP1B over the closely related PTPσ protein, showed no inhibition of PTP-LAR, PRL2 A/S, MKPX, or papain. Finally, 20i and 20j displayed nanomolar inhibition of PTPσ, representing interesting lead compounds for further investigation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa