Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 237: 118068, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33915275

RESUMO

The first 1000 days from conception to two-years of age are a critical period in brain development, and there is an increasing drive for developing technologies to help advance our understanding of neurodevelopmental processes during this time. Functional near-infrared spectroscopy (fNIRS) has enabled longitudinal infant brain function to be studied in a multitude of settings. Conventional fNIRS analyses tend to occur in the channel-space, where data from equivalent channels across individuals are combined, which implicitly assumes that head size and source-detector positions (i.e. array position) on the scalp are constant across individuals. The validity of such assumptions in longitudinal infant fNIRS analyses, where head growth is most rapid, has not previously been investigated. We employed an image reconstruction approach to analyse fNIRS data collected from a longitudinal cohort of infants in The Gambia aged 5- to 12-months. This enabled us to investigate the effect of variability in both head size and array position on the anatomical and statistical inferences drawn from the data at both the group- and the individual-level. We also sought to investigate the impact of group size on inferences drawn from the data. We found that variability in array position was the driving factor between differing inferences drawn from the data at both the individual- and group-level, but its effect was weakened as group size increased towards the full cohort size (N = 53 at 5-months, N = 40 at 8-months and N = 45 at 12-months). We conclude that, at the group sizes in our dataset, group-level channel-space analysis of longitudinal infant fNIRS data is robust to assumptions about head size and array position given the variability in these parameters in our dataset. These findings support a more widespread use of image reconstruction techniques in longitudinal infant fNIRS studies.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Desenvolvimento Infantil/fisiologia , Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Percepção Auditiva/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Gâmbia , Humanos , Lactente , Estudos Longitudinais , Percepção Social , Percepção Visual/fisiologia
2.
Hum Brain Mapp ; 42(3): 567-586, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068482

RESUMO

The neonatal brain undergoes dramatic structural and functional changes over the last trimester of gestation. The accuracy of source localisation of brain activity recorded from the scalp therefore relies on accurate age-specific head models. Although an age-appropriate population-level atlas could be used, detail is lost in the construction of such atlases, in particular with regard to the smoothing of the cortical surface, and so such a model is not representative of anatomy at an individual level. In this work, we describe the construction of a database of individual structural priors of the neonatal head using 215 individual-level datasets at ages 29-44 weeks postmenstrual age from the Developing Human Connectome Project. We have validated a method to segment the extra-cerebral tissue against manual segmentation. We have also conducted a leave-one-out analysis to quantify the expected spatial error incurred with regard to localising functional activation when using a best-matching individual from the database in place of a subject-specific model; the median error was calculated to be 8.3 mm (median absolute deviation 3.8 mm). The database can be applied for any functional neuroimaging modality which requires structural data whereby the physical parameters associated with that modality vary with tissue type and is freely available at www.ucl.ac.uk/dot-hub.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Bases de Dados Factuais , Neuroimagem Funcional/métodos , Idade Gestacional , Humanos , Recém-Nascido , Neuroimagem/normas
3.
Neurophotonics ; 8(2): 025011, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34136588

RESUMO

Significance: Early monolingual versus bilingual experience induces adaptations in the development of linguistic and cognitive processes, and it modulates functional activation patterns during the first months of life. Resting-state functional connectivity (RSFC) is a convenient approach to study the functional organization of the infant brain. RSFC can be measured in infants during natural sleep, and it allows to simultaneously investigate various functional systems. Adaptations have been observed in RSFC due to a lifelong bilingual experience. Investigating whether bilingualism-induced adaptations in RSFC begin to emerge early in development has important implications for our understanding of how the infant brain's organization can be shaped by early environmental factors. Aims: We attempt to describe RSFC using functional near-infrared spectroscopy (fNIRS) and to examine whether it adapts to early monolingual versus bilingual environments. We also present an fNIRS data preprocessing and analysis pipeline that can be used to reliably characterize RSFC in development and to reduce false positives and flawed results interpretations. Methods: We measured spontaneous hemodynamic brain activity in a large cohort ( N = 99 ) of 4-month-old monolingual and bilingual infants using fNIRS. We implemented group-level approaches based on independent component analysis to examine RSFC, while providing proper control for physiological confounds and multiple comparisons. Results: At the group level, we describe the functional organization of the 4-month-old infant brain in large-scale cortical networks. Unbiased group-level comparisons revealed no differences in RSFC between monolingual and bilingual infants at this age. Conclusions: High-quality fNIRS data provide a means to reliably describe RSFC patterns in the infant brain. The proposed group-level RSFC analyses allow to assess differences in RSFC across experimental conditions. An effect of early bilingual experience in RSFC was not observed, suggesting that adaptations might only emerge during explicit linguistic tasks, or at a later point in development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa