Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 77(16): 6778-88, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22860762

RESUMO

The 4-exo and 5-exo-trig atom-transfer cyclizations of 1, 8a-e, 9, 12, and 13 can be mediated with as little as 0.05 mol % of Cu(TPMA)SO(4)·5H(2)O in the presence of 2.5 mol % of borohydride salts in 10 min at room temperature in air. This formal "activators generated by electron transfer" (AGET) procedure utilizes a cheap and oxidatively stable copper source (CuSO(4)·5H(2)O) and can be carried out in environmentally benign solvents (EtOH). It is possible to alter the product distribution in the 5-endo radical-polar crossover reactions of 10a,b and 11 by tailoring the amount of borohydride. Cyclization onto alkynes 14 and 15 is also possible in only 20 min. Controlled radical polymerization of styrene, with increased rates over conventional atom-transfer radical polymerization (ATRP), can be carried out in a controlled fashion (Mn, PDI) using either CuBr or CuSO(4)·5H(2)O and Bu(4)NBH(4).

2.
Phys Chem Chem Phys ; 14(11): 3909-14, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22245936

RESUMO

The reaction of sodium perfluoro-tert-butoxide with benzylic carbon-bromide bond(s) leads to the formation of (nonafluoro-tert-butoxy)methyl ponytail(s), which can enhance the fluorous solubility and partition of aromatics and heterocycles.

3.
J Magn Reson ; 215: 1-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22218011

RESUMO

A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE(13) fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz (1)H DNP-NMR. The spectrometer is designed for use with microwave frequencies up to 395 GHz (the TE(16) second-harmonic mode of the gyrotron) for DNP at 14.1T (600 MHz (1)H NMR). The pulsed microwave output from the gyrotron is converted to a quasi-optical Gaussian beam using a Vlasov antenna and transmitted to the NMR probe via an optical bench, with beam splitters for monitoring and adjusting the microwave power, a ferrite rotator to isolate the gyrotron from the reflected power and a Martin-Puplett interferometer for adjusting the polarisation. The Gaussian beam is reflected by curved mirrors inside the DNP-MAS-NMR probe to be incident at the sample along the MAS rotation axis. The beam is focussed to a ~1 mm waist at the top of the rotor and then gradually diverges to give much more efficient coupling throughout the sample than designs using direct waveguide irradiation. The probe can be used in triple channel HXY mode for 600 MHz (1)H and double channel HX mode for 284 MHz (1)H, with MAS sample temperatures ≥85 K. Initial data at 6.7 T and ~1 W pulsed microwave power are presented with (13)C enhancements of 60 for a frozen urea solution ((1)H-(13)C CP), 16 for bacteriorhodopsin in purple membrane ((1)H-(13)C CP) and 22 for (15)N in a frozen glycine solution ((1)H-(15)N CP) being obtained. In comparison with designs which irradiate perpendicular to the rotation axis the approach used here provides a highly efficient use of the incident microwave beam and an NMR-optimised coil design.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Algoritmos , Bacteriorodopsinas/química , Óxidos N-Cíclicos/química , Campos Eletromagnéticos , Desenho de Equipamento , Glucose/química , Glicina/química , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética/instrumentação , Micro-Ondas , Distribuição Normal , Politetrafluoretileno , Propanóis/química , Ondas de Rádio , Temperatura , Ureia/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa