RESUMO
KEY POINTS: Right heart catheterization data from clinical records of heart transplant patients are used to identify patient-specific models of the cardiovascular system. These patient-specific cardiovascular models represent a snapshot of cardiovascular function at a given post-transplant recovery time point. This approach is used to describe cardiac function in 10 heart transplant patients, five of which had multiple right heart catheterizations allowing an assessment of cardiac function over time. These patient-specific models are used to predict cardiovascular function in the form of right and left ventricular pressure-volume loops and ventricular power, an important metric in the clinical assessment of cardiac function. Outcomes for the longitudinally tracked patients show that our approach was able to identify the one patient from the group of five that exhibited post-transplant cardiovascular complications. ABSTRACT: Heart transplant patients are followed with periodic right heart catheterizations (RHCs) to identify post-transplant complications and guide treatment. Post-transplant positive outcomes are associated with a steady reduction of right ventricular and pulmonary arterial pressures, toward normal levels of right-side pressure (about 20 mmHg) measured by RHC. This study shows that more information about patient progression is obtained by combining standard RHC measures with mechanistic computational cardiovascular system models. The purpose of this study is twofold: to understand how cardiovascular system models can be used to represent a patient's cardiovascular state, and to use these models to track post-transplant recovery and outcome. To obtain reliable parameter estimates comparable within and across datasets, we use sensitivity analysis, parameter subset selection, and optimization to determine patient-specific mechanistic parameters that can be reliably extracted from the RHC data. Patient-specific models are identified for 10 patients from their first post-transplant RHC, and longitudinal analysis is carried out for five patients. Results of the sensitivity analysis and subset selection show that we can reliably estimate seven non-measurable quantities; namely, ventricular diastolic relaxation, systemic resistance, pulmonary venous elastance, pulmonary resistance, pulmonary arterial elastance, pulmonary valve resistance and systemic arterial elastance. Changes in parameters and predicted cardiovascular function post-transplant are used to evaluate the cardiovascular state during recovery of five patients. Of these five patients, only one showed inconsistent trends during recovery in ventricular pressure-volume relationships and power output. At the four-year post-transplant time point this patient exhibited biventricular failure along with graft dysfunction while the remaining four exhibited no cardiovascular complications.
Assuntos
Insuficiência Cardíaca , Transplante de Coração , Ventrículos do Coração , Humanos , Modelos Cardiovasculares , Artéria Pulmonar , Função Ventricular DireitaRESUMO
Pulmonary hypertension (PH), defined by a mean pulmonary arterial pressure (mPAP) greater than 20 mmHg, is characterized by increased pulmonary vascular resistance and decreased pulmonary arterial compliance. There are few measurable biomarkers of PH progression, but a conclusive diagnosis of the disease requires invasive right heart catheterization (RHC). Patient-specific cardiovascular systems-level computational models provide a potential non-invasive tool for determining additional indicators of disease severity. Using computational modelling, this study quantifies physiological parameters indicative of disease severity in nine PH patients. The model includes all four heart chambers, the pulmonary and systemic circulations. We consider two sets of calibration data: static (systolic and diastolic values) RHC data and a combination of static and continuous, time-series waveform data. We determine a subset of identifiable parameters for model calibration using sensitivity analyses and multi-start inference and perform posterior uncertainty quantification. Results show that additional waveform data enables accurate calibration of the right atrial reservoir and pump function across the PH cohort. Model outcomes, including stroke work and pulmonary resistance-compliance relations, reflect typical right heart dynamics in PH phenotypes. Lastly, we show that estimated parameters agree with previous, non-modelling studies, supporting this type of analysis in translational PH research.