Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cryobiology ; 116: 104943, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39033954

RESUMO

The paper discusses the impact of cell size on cytotoxicity and expansion lysis during the osmotic excursions resulting from the contact of hMSCs from UCB with Me2SO. It builds upon the mathematical model recently presented by the authors, which pertains to a population of cells with uniform size. The objective is to enhance the model's relevance by incorporating the more realistic scenario of cell size distribution, utilizing a Population Balance Equations approach. The study compares the capability of the multiple-sized model to the single-sized one to describe system behavior experimentally measured through cytofluorimetry and Coulter counter when, first, suspending hMSCs in hypertonic solutions of Me2SO (at varying osmolality, system temperature, and contact times), and then (at room temperature) pelleting by centrifugation before suspending the cells back to isotonic conditions. Simulations demonstrate that expansion lysis and cytotoxic effect are not affected by cell size for the specific system hMSCs/Me2SO, thus confirming what was found so far by the authors through a single-size model. On the other hand, simulations show that, when varying the adjustable parameters of the model that are expected to change from cell to cell lineages, expansion lysis is sensitive to cell size, while cytotoxicity is not, being mainly influenced by external CPA concentration and contact duration. More specifically, it is found that smaller cells suffer expansion lysis more than larger ones. The findings suggest that different cells from hMSCs may require a multiple-sized model to assess cell damage during osmotic excursions in cryopreservation.

2.
Bioprocess Biosyst Eng ; 47(5): 665-681, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589569

RESUMO

This work explores the potential of three hypersaline native microalgae strains from Oklahoma, Geitlerinema carotinosum, Pseudanabaena sp., and Picochlorum oklahomensis, for simultaneous treatment of flowback (FW) and produced wastewater (PW) and the production of algal biomass. The quality of wastewater before and after treatment with these microalgae strains was evaluated and a characterization of algal biomass in terms of moisture, volatile matter, fixed carbon, and ash contents was assessed. The experimental results indicated how all the microalgae strains were able to grow in both FW and PW, revealing their potential for wastewater treatment. Although algal biomass production was limited by nutrient availability both in PW and FW, a maximum biomass concentration higher than 1.35 g L-1 were achieved by the three strains in two of the PWs and one of the FWs tested, with Pseudanabaena sp. reaching nearly 2 g L-1. Interestingly, higher specific growth rates were obtained by the two cyanobacteria strains G. carotinosum and Pseudanabaena sp. when cultivated in both PW and FW, compared to P. oklahomensis. The harvested algal biomass contained a significant amount of energy, even though it was significantly reduced by the very high salt content. The energy content fell within the recommended range of 16-17 MJ kg-1 for biomass as feedstock for biofuels. The algal treatment resulted in the complete removal of ammonia from the wastewater and a significant reduction in contaminants, such as nitrate, phosphate, boron, and micronutrients like zinc, manganese, and iron.


Assuntos
Microalgas , Águas Residuárias , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Águas Residuárias/microbiologia , Águas Residuárias/química , Biomassa , Oklahoma , Purificação da Água/métodos , Poluentes Químicos da Água , Salinidade
3.
Mar Drugs ; 21(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37367677

RESUMO

Over the years, microalgae have been a source of useful compounds mainly used as food and dietary supplements. Recently, microalgae have been used as a source of metabolites that can participate in the synthesis of several nanoparticles through inexpensive and environmentally friendly routes alternative to chemical synthesis. Notably, the occurrence of global health threats focused attention on the microalgae application in the medicinal field. In this review, we report the influence of secondary metabolites from marine and freshwater microalgae and cyanobacteria on the synthesis of nanoparticles that were applied as therapeutics. In addition, the use of isolated compounds on the surface of nanoparticles to combat diseases has also been addressed. Although studies have proven the beneficial effect of high-value bioproducts on microalgae and their potential in medicine, there is still room for understanding their exact role in the human body and translating lab-based research into clinical trials.


Assuntos
Cianobactérias , Microalgas , Nanopartículas , Humanos , Microalgas/metabolismo , Suplementos Nutricionais , Água Doce
4.
Mar Drugs ; 20(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35621951

RESUMO

Spirulina is the most studied cyanobacterium species for both pharmacological applications and the food industry. The aim of the present review is to summarize the potential benefits of the use of Spirulina for improving healthcare both in space and on Earth. Regarding the first field of application, Spirulina could represent a new technology for the sustainment of long-duration manned missions to planets beyond the Lower Earth Orbit (e.g., Mars); furthermore, it could help astronauts stay healthy while exposed to a variety of stress factors that can have negative consequences even after years. As far as the second field of application, Spirulina could have an active role in various aspects of medicine, such as metabolism, oncology, ophthalmology, central and peripheral nervous systems, and nephrology. The recent findings of the capacity of Spirulina to improve stem cells mobility and to increase immune response have opened new intriguing scenarios in oncological and infectious diseases, respectively.


Assuntos
Voo Espacial , Spirulina , Astronautas , Humanos
5.
Extremophiles ; 23(1): 79-89, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30341564

RESUMO

The extremophile green alga Coccomyxa melkonianii SCCA 048 was investigated to evaluate its ability to grow in culture media with different pH. Specifically, Coccomyxa melkonianii was sampled in the Rio Irvi river (Sardinia, Italy) which is severely polluted by heavy metals as a result of abandoned mining activities. In this study, the strain was cultivated in growth media where the pH was kept fixed at the values of 4.0, 6.8 and 8.0, respectively. During the investigation, a significant phenotypic plasticity of this strain was observed. The strain grew well in the pH range 4.0-8.0, while the optimal value for its growth was 6.8. Furthermore, maximum lipid contents of about 24 and 22 %wt were achieved at the end of cultivation when using pH 4.0 and 8.0, respectively. Finally, the analysis of fatty acid methyl esters (FAMEs) highlights the presence of suitable amounts of compounds which can be profitably exploited in the food, nutraceutical, and cosmetic industry. This aspect, coupled with the possibility of cultivating Coccomyxa melkonianii under extreme pH conditions in economic open ponds, makes this strain an interesting candidate for several biotechnological applications.


Assuntos
Clorófitas/metabolismo , Ácidos Graxos/biossíntese , Clorófitas/citologia , Clorófitas/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Termotolerância
6.
Life Sci Space Res (Amst) ; 42: 108-116, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39067982

RESUMO

Long-term spatial missions will require sustainable methods for biomass production using locally available resources. This study investigates the feasibility of cultivating Chlorella vulgaris, a high value microalgal specie, using a leachate of Martian regolith and synthetic human urine as nutrient sources. The microalga was grown in a standard medium (BBM) mixed with 0, 20, 40, 60, or 100 % Martian medium (MM). MM did not significantly affect final biomass concentrations. Total carbohydrate and protein contents decreased with increasing MM fractions between 0 % and 60 %, but biomass in the 100% MM showed the highest levels of carbohydrates and proteins (25.2 ± 0.9 % and 37.1 ± 1.4 % of the dry weight, respectively, against 19.0 ± 1.7 % and 32.0 ± 2.7 % in the absence of MM). In all MM-containing media, the fraction of the biomass represented by total lipids was lower (by 3.2 to 4.5%) when compared to BBM. Conversely, total carotenoids increased, with the highest value (97.3 ± 1.5 mg/100 g) measured with 20% MM. In a three-dimensional principal component analysis of triacylglycerols, samples clustered according to growth media; a strong impact of growth media on triacylglycerol profiles was observed. Overall, our findings suggest that microalgal biomass produced using regolith and urine can be used as a valuable component of astronauts' diet during missions to Mars.


Assuntos
Chlorella vulgaris , Marte , Chlorella vulgaris/química , Chlorella vulgaris/crescimento & desenvolvimento , Urina/química , Meios de Cultura , Biomassa , Proteínas/análise , Lipídeos/análise , Carboidratos/análise , Carotenoides/análise , Minerais/análise , Triglicerídeos/análise , Pesquisa Espacial
7.
Food Chem ; 449: 139165, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574520

RESUMO

Microalgae are considered as a potential source of bioactive compounds to be used in different fields including food and pharmaceutical industry. In this context, fatty acid esters of hydroxy-fatty acids (FAHFA) are emerging as a new class of compounds with anti-inflammatory and anti-diabetic properties. An existing gap in the field of algal research is the limited knowledge regarding the production of these compounds. Our research questions aimed to determine whether the microalga H. pluvialis can synthesize FAHFA and whether the production levels of these compounds are increased when cultivated in a CO2-rich environment. To answer these questions, we used a LC-QTOF/MS method for the characterization of FAHFA produced by H. pluvialis while an LC-MS/MS method was used for their quantitation. The cultivation conditions of H. pluvialis, which include the utilization of CO2, can result in a 10-50-fold increase in FAHFA production.


Assuntos
Dióxido de Carbono , Ácidos Graxos , Microalgas , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Microalgas/química , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Espectrometria de Massas em Tandem , Clorófitas/química , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo
8.
RSC Adv ; 14(7): 4575-4586, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38318608

RESUMO

Efficient carbon monoxide oxidation is important to reduce its impacts on both human health and the environment. Following a sustainable synthesis route toward new catalysts, nanosized Co3O4 was synthesized based on extracts of microalgae: Spirulina platensis, Chlorella vulgaris, and Haematococcus pluvialis. Using the metabolites in the extract and applying different calcination temperatures (450, 650, 800 °C) led to Co3O4 catalysts with distinctly different properties. The obtained Co3O4 nanomaterials exhibited octahedral, nanosheet, and spherical morphologies with structural defects and surface segregation of phosphorous and potassium, originating from the extracts. The presence of P and K in the oxide nanostructures significantly improved their catalytic CO oxidation activity. When normalized by the specific surface area, the microalgae-derived catalysts exceeded a commercial benchmark catalyst. In situ studies revealed differences in oxygen mobility and carbonate formation during the reaction. The obtained insights may facilitate the development of new synthesis strategies for manufacturing highly active Co3O4 nanocatalysts.

9.
Life (Basel) ; 14(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38398760

RESUMO

The cultivation of cyanobacteria by exploiting available in situ resources represents a possible way to supply food and oxygen to astronauts during long-term crewed missions on Mars. Here, we evaluated the possibility of cultivating the extremophile cyanobacterium Chroococcidiopsis thermalis CCALA 050 under operating conditions that should occur within a dome hosting a recently patented process to produce nutrients and oxygen on Mars. The medium adopted to cultivate this cyanobacterium, named Martian medium, was obtained using a mixture of regolith leachate and astronauts' urine simulants that would be available in situ resources whose exploitation could reduce the mission payload. The results demonstrated that C. thermalis can grow in such a medium. For producing high biomass, the best medium consisted of specific percentages (40%vol) of Martian medium and a standard medium (60%vol). Biomass produced in such a medium exhibits excellent antioxidant properties and contains significant amounts of pigments. Lipidomic analysis demonstrated that biomass contains strategic lipid classes able to help the astronauts facing the oxidative stress and inflammatory phenomena taking place on Mars. These characteristics suggest that this strain could serve as a valuable nutritional resource for astronauts.

10.
J Appl Physiol (1985) ; 134(5): 1063-1074, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36927143

RESUMO

A linear relationship between skeletal muscle venous ([Formula: see text]) and oxygenated (ΔHbMbO2,N) or deoxygenated (ΔHHbMbN) near-infrared spectroscopy (NIRS) signals suggest a main hemoglobin (Hb) contribution to the NIRS signal. However, experimental, and computational evidence supports a significant contribution of myoglobin (Mb) to the NIRS. Venous and NIRS measurements from a canine model of muscle oxidative metabolism (Sun Y, Ferguson BS, Rogatzki MJ, McDonald JR, Gladden LB. Med Sci Sports Exerc 48(10):2013-2020, 2016) were integrated into a computational model of muscle O2 transport and utilization to evaluate whether the relationship between venous and NIRS oxygenation can be affected by a significant Mb contribution to the NIRS signals. The mathematical model predicted well the measure of the changes of [Formula: see text] and NIRS signals for different O2 delivery conditions (blood flow, arterial O2 content) in muscle at rest (T1, T2) and during contraction (T3). Furthermore, computational analysis indicates that for adequate O2 delivery, Mb contribution to NIRS signals was significant (20%-30%) even in the presence of a linear [Formula: see text]-NIRS relationship; for a reduced O2 delivery the nonlinearity of the [Formula: see text]-NIRS relationship was related to the Mb contribution (50%). In this case (T3), the deviation from linearity is observed when O2 delivery is reduced from 1.3 to 0.7 L kg-1·min-1 ([Formula: see text] < 10 mLO2 100 mL-1) and Mb saturation decreased from 85% to 40% corresponding to an increase of the Mb contribution to ΔHHbMbN from 15% to 50% and the contribution to ΔHbMbO2,N from 0% to 30%. In contrast to a common assumption, our model indicates that both NIRS signals (ΔHHbMbN and ΔHbMbO2,N are significantly affected by Hb and Mb oxygenation changes.NEW & NOTEWORTHY Within the near-infrared spectroscopy (NIRS) signal, the contribution from hemoglobin is indistinguishable from that of myoglobin. A computation analysis indicates that a linear relationship between muscle venous oxygen content and NIRS signals does not necessarily indicate a negligible myoglobin contribution to the NIRS signal. A reduced oxygen delivery increases the myoglobin contribution to the NIRS signal. The integrative approach proposed is a powerful way to assist in interpreting the elements from which the NIRS signals are derived.


Assuntos
Mioglobina , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Cães , Mioglobina/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Hemoglobinas/metabolismo , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia
11.
Comput Struct Biotechnol J ; 21: 1169-1188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36789264

RESUMO

Design and optimization of microalgae processes have traditionally relied on the application of unsegregated mathematical models, thus neglecting the impact of cell-to-cell heterogeneity. However, there is experimental evidence that the latter one, including but not limited to variation in mass/size, internal composition and cell cycle phase, can play a crucial role in both cultivation and downstream processes. Population balance equations (PBEs) represent a powerful approach to develop mathematical models describing the effect of cell-to-cell heterogeneity. In this work, the potential of PBEs for the analysis and design of microalgae processes are discussed. A detailed review of PBE applications to microalgae cultivation, harvesting and disruption is reported. The review is largely focused on the application of the univariate size/mass structured PBE, where the size/mass is the only internal variable used to identify the cell state. Nonetheless, the need, addressed by few studies, for additional or alternative internal variables to identify the cell cycle phase and/or provide information about the internal composition is discussed. Through the review, the limitations of previous studies are described, and areas are identified where the development of more reliable PBE models, driven by the increasing availability of single-cell experimental data, could support the understanding and purposeful exploitation of the mechanisms determining cell-to-cell heterogeneity.

12.
PLoS One ; 17(9): e0274753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112659

RESUMO

Nowadays, fungal infections increase, and the demand of novel antifungal agents is constantly rising. In the present study, silver, titanium dioxide, cobalt (II) hydroxide and cobalt (II,III) oxide nanomaterials have been synthesized from Spirulina platensis extract. The synthesis mechanism has been studied using GCMS and FTIR thus confirming the involvement of secondary metabolites, mainly amines. The obtained products have been analysed using XRD, SEM, TGA and zeta potential techniques. The findings revealed average crystallite size of 15.22 nm with 9.72 nm for oval-shaped silver nanoparticles increasing to 26.01 nm and 24.86 nm after calcination and 4.81 nm for spherical-shaped titanium dioxide nanoparticles which decreased to 4.62 nm after calcination. Nanoflake shape has been observed for cobalt hydroxide nanomaterials and for cobalt (II, III) oxide with crystallite size of 3.52 nm and 13.28 nm, respectively. Silver nanoparticles showed the best thermal and water dispersion stability of all the prepared structures. Once subjected to three different Candida species (C. albicans, C. glabrata, and C. krusei) silver nanoparticles and cobalt (II) hydroxide nanomaterials showed strong antifungal activity at 50 µg/mL with minimum inhibitory concentration (MIC) values. After light exposition, MIC values for nanomaterials decreased (to 12.5 µg/mL) for C. krusei and increased (100 µg/mL) for C. albicans and C. glabrata.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Aminas , Antifúngicos/química , Antifúngicos/farmacologia , Candida albicans , Candida glabrata , Cobalto , Nanopartículas Metálicas/química , Óxidos , Extratos Vegetais/farmacologia , Prata/química , Spirulina , Titânio , Água
13.
J Hazard Mater ; 388: 121731, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31786025

RESUMO

Mechanochemical processing to immobilize heavy metals in contaminated soils has been proposed few years ago. The corresponding experimental results have shown that, under specific operating conditions, the mechanical energy provided by suitable ball mills, can greatly reduce heavy metals mobility without the addition of any reactant. Such results, together with the extreme simplicity of the proposed technique, are still very promising in view of its industrial transposition. Along these lines, the use of suitable mathematical models might represent a valuable tool which would permit to design and control mechano-chemical reactors for field applications. In this work, a simple albeit exhaustive model is proposed for the first time to quantitatively describe the effects of the dynamics of milling process, such as impact frequency and energy, on the immobilization kinetics. Model results and experimental data obtained so far are successfully compared in terms of leached heavy metals and immobilization efficiency evolution with treatment time. Finally, the potential capability of the model to contribute to the industrial scale transposition of the proposed technique is addressed.

14.
Environ Sci Pollut Res Int ; 27(25): 31394-31407, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32488720

RESUMO

Mechano-chemical treatment has been recognized to be a promising technology for the immobilization of heavy metals (HMs) in contaminated soils without the use of additional reagents. Despite this, very few studies aiming to investigate the applicability of this technology at full scale have been published so far. In this study, a quantitative approach was developed to provide process design information to scale-up from laboratory- into pilot-scale mechano-chemical reactors for immobilizing heavy metals in contaminated mining soil. In fact, after preliminary experiments with laboratory-scale ball mills, experiments have been carried out by taking advantage of milling devices suited for pilot-scale applications. The experimental data of this work, along with literature ones, have been quantitatively interpreted by means of a mathematical model allowing to describe the effect of milling dynamics on the HM immobilization kinetics for applications at different scales. The results suggest that the mechanical process can trigger specific physico-chemical phenomena leading to a significant reduction of HMs leached from mining soils. Specifically, after suitably prolonged processing time, HM concentration in the leachate is lowered below the corresponding threshold limits. The observed behavior is well captured by the proposed model for different HMs and operating conditions. Therefore, the model might be exploited to infer design parameters for the implementation of this technique at the pilot and full scale. Moreover, it represents a valuable tool for designing and controlling mechano-chemical reactors at productive scale.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Poluição Ambiental , Mineração , Solo
15.
Comput Biol Chem ; 32(5): 338-44, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18667361

RESUMO

A novel mathematical model to simulate stem cells differentiation into specialized cells of non-connective tissues is proposed. The model is based upon material balances for growth factors coupled with a mass-structured population balance describing cell growth, proliferation and differentiation. The proposed model is written in a general form and it may be used to simulate a generic cell differentiation pathway during in vitro cultivation when specific growth factors are used. Literature experimental data concerning the differentiation of central nervous stem cells into astrocytes are successfully compared with model results, thus demonstrating the validity of the proposed model as well as its predictive capability. Finally, sensitivity analysis of model parameters is also performed in order to clarify what mechanisms most strongly influence differentiation and cell types distribution.


Assuntos
Diferenciação Celular/fisiologia , Simulação por Computador , Modelos Biológicos , Células-Tronco/citologia , Ativinas/farmacologia , Algoritmos , Animais , Astrócitos/citologia , Diferenciação Celular/efeitos dos fármacos , Crescimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sistema Nervoso Central/citologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Fator Inibidor de Leucemia/farmacologia , Camundongos , Células-Tronco/efeitos dos fármacos
16.
J Biotechnol ; 130(2): 171-82, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17459507

RESUMO

A novel mathematical model to simulate mesenchymal stem cells differentiation into specialized cells is proposed. The model is based upon material balances for extracellular matrix compounds, growth factors and nutrients coupled with a mass-structured population balance describing cell growth, proliferation and differentiation. The proposed model is written in a general form and it may be used to simulate a generic cell differentiation pathway occurring in vivo or during in vitro cultivation when specific growth factors are used. Literature experimental data concerning the differentiation of mesenchymal stem cells into chondrocytes in terms of total DNA and glycosaminoglycan content are successfully compared with model results, thus demonstrating the validity of the proposed model as well as its predictive capability. A further test of the model capability is performed for the case of in vivo fracture healing during which mesenchymal stem cells differentiate into chondrocytes and osteoblasts. Considerations about the extension of the proposed model to different pathologies beside fracture healing are reported. Finally, sensitivity analysis of model parameters is also performed in order to clarify what mechanisms most strongly influence differentiation and the distribution of cell types.


Assuntos
Diferenciação Celular , Simulação por Computador , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Modelos Teóricos , Células da Medula Óssea/citologia , Células Cultivadas , Condrócitos/citologia , Meios de Cultura/metabolismo , DNA/análise , Matriz Extracelular/fisiologia , Consolidação da Fratura/fisiologia , Glicosaminoglicanos/análise , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Modelos Biológicos , Osteoblastos/citologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Chemosphere ; 67(4): 631-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17188323

RESUMO

In the present work, the use of ball milling reactors for the remediation of lead contaminated soils was investigated. Lead immobilization was achieved without the use of additional reactants but only through the exploitation of weak transformations induced on the treated soil by mechanical loads taking place during collisions among milling media. The degree of metal immobilization was evaluated by analyzing the leachable fraction of Pb(II) obtained through the "synthetic precipitation leaching procedure". The reduction of leachable Pb(II) from certain synthetic soils, i.e., bentonitic, sandy and kaolinitc ones, was obtained under specific milling regimes. For example, for the case of bentonitic soils characterized by a Pb(II) concentration in the solid phase equal to 954.4 mg kg(-1), leachable Pb(II) was reduced, after 7 h of mechanical treatment, from 1.3 mg l(-1) to a concentration lower than the USEPA regulatory threshold (i.e., 0.015 mg l(-1) for drinkable water). Similar results were obtained for sandy and kaolinitic soils. X-ray diffraction, scanning electron microscopy, electron dispersive spectroscopy and granulometric analyses revealed no significant alterations of the intrinsic character of sandy and bentonitic soils after milling except for a relatively small increase of particles size and a partial amorphization of the treated soil. On the other hand, the mechanical treatment caused the total amorphization of kaolinitic soil. The increase of immobilization efficiency can be probably ascribed to specific phenomena induced by mechanical treatment such as entrapment of Pb(II) into aggregates due to aggregation, solid diffusion of Pb(II) into crystalline reticulum of soil particles as well as the formation of new fresh surfaces (through particle breakage) onto which Pb(II) may be irreversibly adsorbed.


Assuntos
Recuperação e Remediação Ambiental/métodos , Chumbo/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Adsorção
19.
Sci Adv ; 3(1): e1600327, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28138542

RESUMO

A need exists for artificial muscles that are silent, soft, and compliant, with performance characteristics similar to those of skeletal muscle, enabling natural interaction of assistive devices with humans. By combining one of humankind's oldest technologies, textile processing, with electroactive polymers, we demonstrate here the feasibility of wearable, soft artificial muscles made by weaving and knitting, with tunable force and strain. These textile actuators were produced from cellulose yarns assembled into fabrics and coated with conducting polymers using a metal-free deposition. To increase the output force, we assembled yarns in parallel by weaving. The force scaled linearly with the number of yarns in the woven fabric. To amplify the strain, we knitted a stretchable fabric, exhibiting a 53-fold increase in strain. In addition, the textile construction added mechanical stability to the actuators. Textile processing permits scalable and rational production of wearable artificial muscles, and enables novel ways to design assistive devices.


Assuntos
Órgãos Artificiais , Músculo Esquelético , Robótica , Humanos
20.
Tissue Eng ; 12(8): 2311-20, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16968171

RESUMO

A novel mathematical model to simulate the growth of engineered cartilage in static systems is proposed. This model is based on material balances for the involved species (glycosaminoglycan and collagen, both pertaining to extracellular matrix), as well as mass-structured population balance for simulating cell growth and its proliferation within the scaffold. This model may simulate tissue growth on static culture taking place in Petri dishes, static flasks, and well plates for different types of scaffolds (i.e., poly(glycolic acid) [PGA], PGA/poly(l-lactic acid), and collagen sponge). This work aimed to demonstrate that the model approach proposed in previous works, regarding engineered cartilage growth on PGA scaffolds performed in rotating bioreactors, may also be applied to different scaffolds and system configurations. In particular, the balance equation for simulating collagen production is introduced, as well as the use of spatial averaging over the spatial region to compare experimental data with the model. Experimental data from the literature in terms of cells, glycosaminoglycans, and collagen content have been successfully compared with model results, thus demonstrating the validity of the proposed model, as well as its predictive capability.


Assuntos
Cartilagem Articular/crescimento & desenvolvimento , Simulação por Computador , Modelos Biológicos , Técnicas de Cultura de Tecidos , Engenharia Tecidual , Animais , Bovinos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa