Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(22): 12502-12522, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33264393

RESUMO

Coronaviruses represent a large family of enveloped RNA viruses that infect a large spectrum of animals. In humans, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic and is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2002 and 2012, respectively. All viruses described to date entirely rely on the protein synthesis machinery of the host cells to produce proteins required for their replication and spread. As such, virus often need to control the cellular translational apparatus to avoid the first line of the cellular defense intended to limit the viral propagation. Thus, coronaviruses have developed remarkable strategies to hijack the host translational machinery in order to favor viral protein production. In this review, we will describe some of these strategies and will highlight the role of viral proteins and RNAs in this process.


Assuntos
COVID-19/prevenção & controle , Genoma Viral/genética , Biossíntese de Proteínas/genética , RNA Viral/genética , SARS-CoV-2/genética , Animais , COVID-19/epidemiologia , COVID-19/virologia , Regulação Viral da Expressão Gênica , Humanos , Pandemias , SARS-CoV-2/fisiologia , Replicação Viral
2.
Viruses ; 14(7)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35891485

RESUMO

The SARS-CoV-2 infection generates up to nine different sub-genomic mRNAs (sgRNAs), in addition to the genomic RNA (gRNA). The 5'UTR of each viral mRNA shares the first 75 nucleotides (nt.) at their 5'end, called the leader, but differentiates by a variable sequence (0 to 190 nt. long) that follows the leader. As a result, each viral mRNA has its own specific 5'UTR in term of length, RNA structure, uORF and Kozak context; each one of these characteristics could affect mRNA expression. In this study, we have measured and compared translational efficiency of each of the ten viral transcripts. Our data show that most of them are very efficiently translated in all translational systems tested. Surprisingly, the gRNA 5'UTR, which is the longest and the most structured, was also the most efficient to initiate translation. This property is conserved in the 5'UTR of SARS-CoV-1 but not in MERS-CoV strain, mainly due to the regulation imposed by the uORF. Interestingly, the translation initiation mechanism on the SARS-CoV-2 gRNA 5'UTR requires the cap structure and the components of the eIF4F complex but showed no dependence in the presence of the poly(A) tail in vitro. Our data strongly suggest that translation initiation on SARS-CoV-2 mRNAs occurs via an unusual cap-dependent mechanism.


Assuntos
RNA Guia de Cinetoplastídeos , SARS-CoV-2 , Regiões 5' não Traduzidas , Genômica , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Mensageiro/genética , SARS-CoV-2/genética
3.
BMC Mol Cell Biol ; 22(1): 16, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663378

RESUMO

BACKGROUND: Staufen2 (STAU2) is an RNA binding protein involved in the posttranscriptional regulation of gene expression. In neurons, STAU2 is required to maintain the balance between differentiation and proliferation of neural stem cells through asymmetric cell division. However, the importance of controlling STAU2 expression for cell cycle progression is not clear in non-neuronal dividing cells. We recently showed that STAU2 transcription is inhibited in response to DNA-damage due to E2F1 displacement from the STAU2 gene promoter. We now study the regulation of STAU2 steady-state levels in unstressed cells and its consequence for cell proliferation. RESULTS: CRISPR/Cas9-mediated and RNAi-dependent STAU2 depletion in the non-transformed hTERT-RPE1 cells both facilitate cell proliferation suggesting that STAU2 expression influences pathway(s) linked to cell cycle controls. Such effects are not observed in the CRISPR STAU2-KO cancer HCT116 cells nor in the STAU2-RNAi-depleted HeLa cells. Interestingly, a physiological decrease in the steady-state level of STAU2 is controlled by caspases. This effect of peptidases is counterbalanced by the activity of the CHK1 pathway suggesting that STAU2 partial degradation/stabilization fines tune cell cycle progression in unstressed cells. A large-scale proteomic analysis using STAU2/biotinylase fusion protein identifies known STAU2 interactors involved in RNA translation, localization, splicing, or decay confirming the role of STAU2 in the posttranscriptional regulation of gene expression. In addition, several proteins found in the nucleolus, including proteins of the ribosome biogenesis pathway and of the DNA damage response, are found in close proximity to STAU2. Strikingly, many of these proteins are linked to the kinase CHK1 pathway, reinforcing the link between STAU2 functions and the CHK1 pathway. Indeed, inhibition of the CHK1 pathway for 4 h dissociates STAU2 from proteins involved in translation and RNA metabolism. CONCLUSIONS: These results indicate that STAU2 is involved in pathway(s) that control(s) cell proliferation, likely via mechanisms of posttranscriptional regulation, ribonucleoprotein complex assembly, genome integrity and/or checkpoint controls. The mechanism by which STAU2 regulates cell growth likely involves caspases and the kinase CHK1 pathway.


Assuntos
Caspases/metabolismo , Divisão Celular , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Caspases/genética , Quinase 1 do Ponto de Checagem/genética , Células HCT116 , Células HeLa , Humanos , Proteínas do Tecido Nervoso/genética , Proteômica , Proteínas de Ligação a RNA/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa