Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.325
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959890

RESUMO

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.

2.
Cell ; 184(3): 596-614.e14, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33508232

RESUMO

Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization. Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis revealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2) loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), combined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of CPI sensitivity.


Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/imunologia , Linfócitos T/imunologia , Biomarcadores Tumorais/metabolismo , Antígenos CD8/metabolismo , Quimiocina CXCL13/metabolismo , Cromossomos Humanos Par 9/genética , Estudos de Coortes , Ciclina D1/genética , Variações do Número de Cópias de DNA/genética , Exoma/genética , Amplificação de Genes , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Análise Multivariada , Mutação/genética , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único/genética , Receptores CCR5/metabolismo , Linfócitos T/efeitos dos fármacos , Carga Tumoral/genética
3.
Cell ; 184(9): 2454-2470.e26, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33857425

RESUMO

Glioblastoma multiforme (GBM) is an aggressive brain tumor for which current immunotherapy approaches have been unsuccessful. Here, we explore the mechanisms underlying immune evasion in GBM. By serially transplanting GBM stem cells (GSCs) into immunocompetent hosts, we uncover an acquired capability of GSCs to escape immune clearance by establishing an enhanced immunosuppressive tumor microenvironment. Mechanistically, this is not elicited via genetic selection of tumor subclones, but through an epigenetic immunoediting process wherein stable transcriptional and epigenetic changes in GSCs are enforced following immune attack. These changes launch a myeloid-affiliated transcriptional program, which leads to increased recruitment of tumor-associated macrophages. Furthermore, we identify similar epigenetic and transcriptional signatures in human mesenchymal subtype GSCs. We conclude that epigenetic immunoediting may drive an acquired immune evasion program in the most aggressive mesenchymal GBM subtype by reshaping the tumor immune microenvironment.


Assuntos
Neoplasias Encefálicas/imunologia , Epigênese Genética , Glioblastoma/imunologia , Evasão da Resposta Imune/imunologia , Células Mieloides/imunologia , Células-Tronco Neoplásicas/imunologia , Microambiente Tumoral/imunologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células , Metilação de DNA , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Mieloides/metabolismo , Células Mieloides/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Immunity ; 50(2): 446-461.e9, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30709742

RESUMO

Production of interleukin-17 (IL-17) and IL-22 by T helper 17 (Th17) cells and group 3 innate lymphoid cells (ILC3s) in response to the gut microbiota ensures maintenance of intestinal barrier function. Here, we examined the mechanisms whereby the immune system detects microbiota in the steady state. A Syk-kinase-coupled signaling pathway in dendritic cells (DCs) was critical for commensal-dependent production of IL-17 and IL-22 by CD4+ T cells. The Syk-coupled C-type lectin receptor Mincle detected mucosal-resident commensals in the Peyer's patches (PPs), triggered IL-6 and IL-23p19 expression, and thereby regulated function of intestinal Th17- and IL-17-secreting ILCs. Mice deficient in Mincle or with selective depletion of Syk in CD11c+ cells had impaired production of intestinal RegIIIγ and IgA and increased systemic translocation of gut microbiota. Consequently, Mincle deficiency led to liver inflammation and deregulated lipid metabolism. Thus, sensing of commensals by Mincle and Syk signaling in CD11c+ cells reinforces intestinal immune barrier and promotes host-microbiota mutualism, preventing systemic inflammation.


Assuntos
Células Dendríticas/imunologia , Microbioma Gastrointestinal/imunologia , Interleucina-17/imunologia , Interleucinas/imunologia , Lectinas Tipo C/imunologia , Proteínas de Membrana/imunologia , Quinase Syk/imunologia , Animais , Células Dendríticas/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Interleucina-17/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/microbiologia , Transdução de Sinais/imunologia , Quinase Syk/genética , Quinase Syk/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Interleucina 22
5.
Nat Rev Genet ; 23(7): 395-410, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35217821

RESUMO

The development of single-cell and spatial transcriptomics methods was instrumental in the conception of the Human Cell Atlas initiative, which aims to generate an integrated map of all cells across the human body. These technology advances are bringing increasing depth and resolution to maps of human organs and tissues, as well as our understanding of individual human cell types. Commonalities as well as tissue-specific features of primary and supportive cell types across human organs are beginning to emerge from these human tissue maps. In this Review, we highlight key biological insights obtained from cross-tissue studies into epithelial, fibroblast, vascular and immune cells based on single-cell gene expression data in humans and contrast it with mechanisms reported in mice.


Assuntos
Análise de Célula Única , Transcriptoma , Animais , Humanos , Camundongos
6.
Nature ; 601(7892): 263-267, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937938

RESUMO

Cancer is a ubiquitous disease of metazoans, predicted to disproportionately affect larger, long-lived organisms owing to their greater number of cell divisions, and thus increased probability of somatic mutations1,2. While elevated cancer risk with larger body size and/or longevity has been documented within species3-5, Peto's paradox indicates the apparent lack of such an association among taxa6. Yet, unequivocal empirical evidence for Peto's paradox is lacking, stemming from the difficulty of estimating cancer risk in non-model species. Here we build and analyse a database on cancer-related mortality using data on adult zoo mammals (110,148 individuals, 191 species) and map age-controlled cancer mortality to the mammalian tree of life. We demonstrate the universality and high frequency of oncogenic phenomena in mammals and reveal substantial differences in cancer mortality across major mammalian orders. We show that the phylogenetic distribution of cancer mortality is associated with diet, with carnivorous mammals (especially mammal-consuming ones) facing the highest cancer-related mortality. Moreover, we provide unequivocal evidence for the body size and longevity components of Peto's paradox by showing that cancer mortality risk is largely independent of both body mass and adult life expectancy across species. These results highlight the key role of life-history evolution in shaping cancer resistance and provide major advancements in the quest for natural anticancer defences.


Assuntos
Animais de Zoológico , Dieta , Mamíferos , Neoplasias , Envelhecimento , Animais , Animais de Zoológico/classificação , Tamanho Corporal , Peso Corporal , Carnivoridade , Dieta/veterinária , Longevidade , Mamíferos/classificação , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/veterinária , Filogenia , Fatores de Risco , Especificidade da Espécie
7.
Nature ; 602(7896): 321-327, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34937051

RESUMO

It is not fully understood why COVID-19 is typically milder in children1-3. Here, to examine the differences between children and adults in their response to SARS-CoV-2 infection, we analysed paediatric and adult patients with COVID-19 as well as healthy control individuals (total n = 93) using single-cell multi-omic profiling of matched nasal, tracheal, bronchial and blood samples. In the airways of healthy paediatric individuals, we observed cells that were already in an interferon-activated state, which after SARS-CoV-2 infection was further induced especially in airway immune cells. We postulate that higher paediatric innate interferon responses restrict viral replication and disease progression. The systemic response in children was characterized by increases in naive lymphocytes and a depletion of natural killer cells, whereas, in adults, cytotoxic T cells and interferon-stimulated subpopulations were significantly increased. We provide evidence that dendritic cells initiate interferon signalling in early infection, and identify epithelial cell states associated with COVID-19 and age. Our matching nasal and blood data show a strong interferon response in the airways with the induction of systemic interferon-stimulated populations, which were substantially reduced in paediatric patients. Together, we provide several mechanisms that explain the milder clinical syndrome observed in children.


Assuntos
COVID-19/sangue , COVID-19/imunologia , Células Dendríticas/imunologia , Interferons/imunologia , Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Adulto , Brônquios/imunologia , Brônquios/virologia , COVID-19/patologia , Chicago , Estudos de Coortes , Progressão da Doença , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Feminino , Humanos , Imunidade Inata , Londres , Masculino , Mucosa Nasal/imunologia , Mucosa Nasal/virologia , SARS-CoV-2/crescimento & desenvolvimento , Análise de Célula Única , Traqueia/virologia , Adulto Jovem
8.
Trends Genet ; 40(1): 83-93, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37953195

RESUMO

Recent technological and algorithmic advances enable single-cell transcriptomic analysis with remarkable depth and breadth. Nonetheless, a persistent challenge is the compromise between the ability to profile high numbers of cells and the achievement of full-length transcript coverage. Currently, the field is progressing and developing new and creative solutions that improve cellular throughput, gene detection sensitivity and full-length transcript capture. Furthermore, long-read sequencing approaches for single-cell transcripts are breaking frontiers that have previously blocked full transcriptome characterization. We here present a comprehensive overview of available options for single-cell transcriptome profiling, highlighting the key advantages and disadvantages of each approach.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma , Transcriptoma/genética , Perfilação da Expressão Gênica , Análise de Sequência de RNA
9.
Nat Methods ; 21(2): 170-181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37710020

RESUMO

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.


Assuntos
Lista de Checagem , Editoração , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador , Microscopia
10.
Immunity ; 49(5): 819-828.e6, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30413362

RESUMO

Inducing graft acceptance without chronic immunosuppression remains an elusive goal in organ transplantation. Using an experimental transplantation mouse model, we demonstrate that local macrophage activation through dectin-1 and toll-like receptor 4 (TLR4) drives trained immunity-associated cytokine production during allograft rejection. We conducted nanoimmunotherapeutic studies and found that a short-term mTOR-specific high-density lipoprotein (HDL) nanobiologic treatment (mTORi-HDL) averted macrophage aerobic glycolysis and the epigenetic modifications underlying inflammatory cytokine production. The resulting regulatory macrophages prevented alloreactive CD8+ T cell-mediated immunity and promoted tolerogenic CD4+ regulatory T (Treg) cell expansion. To enhance therapeutic efficacy, we complemented the mTORi-HDL treatment with a CD40-TRAF6-specific nanobiologic (TRAF6i-HDL) that inhibits co-stimulation. This synergistic nanoimmunotherapy resulted in indefinite allograft survival. Together, we show that HDL-based nanoimmunotherapy can be employed to control macrophage function in vivo. Our strategy, focused on preventing inflammatory innate immune responses, provides a framework for developing targeted therapies that promote immunological tolerance.


Assuntos
Sobrevivência de Enxerto/imunologia , Terapia de Imunossupressão , Inflamação/imunologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Transplante de Órgãos , Aloenxertos , Animais , Biomarcadores , Proteína HMGB1/genética , Tolerância Imunológica , Imunidade Inata , Memória Imunológica , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Vimentina/genética
11.
Nature ; 597(7875): 250-255, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497389

RESUMO

The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease.


Assuntos
Envelhecimento , Sistema Nervoso Entérico/citologia , Feto/citologia , Saúde , Intestinos/citologia , Intestinos/crescimento & desenvolvimento , Linfonodos/citologia , Linfonodos/crescimento & desenvolvimento , Adulto , Animais , Criança , Doença de Crohn/patologia , Conjuntos de Dados como Assunto , Sistema Nervoso Entérico/anatomia & histologia , Sistema Nervoso Entérico/embriologia , Sistema Nervoso Entérico/crescimento & desenvolvimento , Células Epiteliais/citologia , Feminino , Feto/anatomia & histologia , Feto/embriologia , Humanos , Intestinos/embriologia , Intestinos/inervação , Linfonodos/embriologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Organogênese , Receptores de IgG/metabolismo , Transdução de Sinais , Análise Espaço-Temporal , Fatores de Tempo
12.
Nature ; 597(7877): 539-543, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526718

RESUMO

Seven years after the declaration of the first epidemic of Ebola virus disease in Guinea, the country faced a new outbreak-between 14 February and 19 June 2021-near the epicentre of the previous epidemic1,2. Here we use next-generation sequencing to generate complete or near-complete genomes of Zaire ebolavirus from samples obtained from 12 different patients. These genomes form a well-supported phylogenetic cluster with genomes from the previous outbreak, which indicates that the new outbreak was not the result of a new spillover event from an animal reservoir. The 2021 lineage shows considerably lower divergence than would be expected during sustained human-to-human transmission, which suggests a persistent infection with reduced replication or a period of latency. The resurgence of Zaire ebolavirus from humans five years after the end of the previous outbreak of Ebola virus disease reinforces the need for long-term medical and social care for patients who survive the disease, to reduce the risk of re-emergence and to prevent further stigmatization.


Assuntos
Surtos de Doenças , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Modelos Biológicos , Animais , República Democrática do Congo/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Ebolavirus/classificação , Feminino , Guiné/epidemiologia , Doença pelo Vírus Ebola/transmissão , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Infecção Persistente/virologia , Filogenia , Sobreviventes , Fatores de Tempo , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
13.
N Engl J Med ; 389(6): 527-539, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37342957

RESUMO

BACKGROUND: Increasing evidence links genetic defects affecting actin-regulatory proteins to diseases with severe autoimmunity and autoinflammation, yet the underlying molecular mechanisms are poorly understood. Dedicator of cytokinesis 11 (DOCK11) activates the small Rho guanosine triphosphatase (GTPase) cell division cycle 42 (CDC42), a central regulator of actin cytoskeleton dynamics. The role of DOCK11 in human immune-cell function and disease remains unknown. METHODS: We conducted genetic, immunologic, and molecular assays in four patients from four unrelated families who presented with infections, early-onset severe immune dysregulation, normocytic anemia of variable severity associated with anisopoikilocytosis, and developmental delay. Functional assays were performed in patient-derived cells, as well as in mouse and zebrafish models. RESULTS: We identified rare, X-linked germline mutations in DOCK11 in the patients, leading to a loss of protein expression in two patients and impaired CDC42 activation in all four patients. Patient-derived T cells did not form filopodia and showed abnormal migration. In addition, the patient-derived T cells, as well as the T cells from Dock11-knockout mice, showed overt activation and production of proinflammatory cytokines that were associated with an increased degree of nuclear translocation of nuclear factor of activated T cell 1 (NFATc1). Anemia and aberrant erythrocyte morphologic features were recapitulated in a newly generated dock11-knockout zebrafish model, and anemia was amenable to rescue on ectopic expression of constitutively active CDC42. CONCLUSIONS: Germline hemizygous loss-of-function mutations affecting the actin regulator DOCK11 were shown to cause a previously unknown inborn error of hematopoiesis and immunity characterized by severe immune dysregulation and systemic inflammation, recurrent infections, and anemia. (Funded by the European Research Council and others.).


Assuntos
Actinas , Anemia , Fatores de Troca do Nucleotídeo Guanina , Inflamação , Animais , Humanos , Camundongos , Actinas/genética , Actinas/metabolismo , Anemia/etiologia , Anemia/genética , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Hematopoese , Inflamação/etiologia , Inflamação/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
14.
Nat Methods ; 20(6): 824-835, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37069271

RESUMO

BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is representative of the data obtained in many neuroscience laboratories interested in neuron tracing. Here, we report generated gold standard manual annotations for a subset of the available imaging datasets and quantified tracing quality for 35 automatic tracing algorithms. The goal of generating such a hand-curated diverse dataset is to advance the development of tracing algorithms and enable generalizable benchmarking. Together with image quality features, we pooled the data in an interactive web application that enables users and developers to perform principal component analysis, t-distributed stochastic neighbor embedding, correlation and clustering, visualization of imaging and tracing data, and benchmarking of automatic tracing algorithms in user-defined data subsets. The image quality metrics explain most of the variance in the data, followed by neuromorphological features related to neuron size. We observed that diverse algorithms can provide complementary information to obtain accurate results and developed a method to iteratively combine methods and generate consensus reconstructions. The consensus trees obtained provide estimates of the neuron structure ground truth that typically outperform single algorithms in noisy datasets. However, specific algorithms may outperform the consensus tree strategy in specific imaging conditions. Finally, to aid users in predicting the most accurate automatic tracing results without manual annotations for comparison, we used support vector machine regression to predict reconstruction quality given an image volume and a set of automatic tracings.


Assuntos
Benchmarking , Microscopia , Microscopia/métodos , Imageamento Tridimensional/métodos , Neurônios/fisiologia , Algoritmos
15.
Blood ; 143(10): 933-937, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38194681

RESUMO

ABSTRACT: T-ALL relapse usually occurs early but can occur much later, which has been suggested to represent a de novo leukemia. However, we conclusively demonstrate late relapse can evolve from a pre-leukemic subclone harbouring a non-coding mutation that evades initial chemotherapy.


Assuntos
Leucemia-Linfoma de Células T do Adulto , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Mutação , Recidiva , Doença Crônica , Células Clonais
16.
Immunity ; 47(3): 566-581.e9, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930663

RESUMO

Microglia play a pivotal role in the maintenance of brain homeostasis but lose homeostatic function during neurodegenerative disorders. We identified a specific apolipoprotein E (APOE)-dependent molecular signature in microglia from models of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Alzheimer's disease (AD) and in microglia surrounding neuritic ß-amyloid (Aß)-plaques in the brains of people with AD. The APOE pathway mediated a switch from a homeostatic to a neurodegenerative microglia phenotype after phagocytosis of apoptotic neurons. TREM2 (triggering receptor expressed on myeloid cells 2) induced APOE signaling, and targeting the TREM2-APOE pathway restored the homeostatic signature of microglia in ALS and AD mouse models and prevented neuronal loss in an acute model of neurodegeneration. APOE-mediated neurodegenerative microglia had lost their tolerogenic function. Our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target that could aid in the restoration of homeostatic microglia.


Assuntos
Apolipoproteínas E/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Transcriptoma , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apoptose/genética , Apoptose/imunologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Análise por Conglomerados , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcação de Genes , Humanos , Tolerância Imunológica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microglia/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Doenças Neurodegenerativas/imunologia , Neurônios/metabolismo , Fagocitose/genética , Fagocitose/imunologia , Fenótipo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(3): e2214700120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626562

RESUMO

KCNH2 encodes hERG1, the voltage-gated potassium channel that conducts the rapid delayed rectifier potassium current (IKr) in human cardiac tissue. hERG1 is one of the first channels expressed during early cardiac development, and its dysfunction is associated with intrauterine fetal death, sudden infant death syndrome, cardiac arrhythmia, and sudden cardiac death. Here, we identified a hERG1 polypeptide (hERG1NP) that is targeted to the nuclei of immature cardiac cells, including human stem cell-derived cardiomyocytes (hiPSC-CMs) and neonatal rat cardiomyocytes. The nuclear hERG1NP immunofluorescent signal is diminished in matured hiPSC-CMs and absent from adult rat cardiomyocytes. Antibodies targeting distinct hERG1 channel epitopes demonstrated that the hERG1NP signal maps to the hERG1 distal C-terminal domain. KCNH2 deletion using CRISPR simultaneously abolished IKr and the hERG1NP signal in hiPSC-CMs. We then identified a putative nuclear localization sequence (NLS) within the distal hERG1 C-terminus, 883-RQRKRKLSFR-892. Interestingly, the distal C-terminal domain was targeted almost exclusively to the nuclei when overexpressed HEK293 cells. Conversely, deleting the NLS from the distal peptide abolished nuclear targeting. Similarly, blocking α or ß1 karyopherin activity diminished nuclear targeting. Finally, overexpressing the putative hERG1NP peptide in the nuclei of HEK cells significantly reduced hERG1a current density, compared to cells expressing the NLS-deficient hERG1NP or GFP. These data identify a developmentally regulated polypeptide encoded by KCNH2, hERG1NP, whose presence in the nucleus indirectly modulates hERG1 current magnitude and kinetics.


Assuntos
Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Miócitos Cardíacos , Animais , Humanos , Ratos , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Células HEK293 , Miócitos Cardíacos/metabolismo , Peptídeos/metabolismo
18.
J Neurosci ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897723

RESUMO

Light plays an essential role in a variety of physiological processes, including vision, mood, and glucose homeostasis. However, the intricate relationship between light and an animal's feeding behavior has remained elusive. Here, we found that light exposure suppresses food intake, whereas darkness amplifies it in male mice. Interestingly, this phenomenon extends its reach to diurnal male Nile grass rats and healthy humans. We further show that lateral habenula (LHb) neurons in mice respond to light exposure, which in turn activates 5-HT neurons in the dorsal Raphe nucleus (DRN). Activation of the LHb → 5-HTDRN circuit in mice blunts darkness-induced hyperphagia, while inhibition of the circuit prevents light-induced anorexia. Together, we discovered a light responsive neural circuit that relays the environmental light signals to regulate feeding behavior in mice.Significance statement Feeding behavior is influenced by a myriad of sensory inputs, but the impact of light exposure on feeding regulation has remained enigmatic. Here, we showed that light exposure diminishes food intake across both nocturnal and diurnal species. Delving deeper, our findings revealed that the LHb → 5-HTDRN neural circuit plays a pivotal role in mediating light-induced anorexia in mice. These discoveries not only enhance our comprehension of the intricate neuronal mechanisms governing feeding in response to light but also offer insights for developing innovative strategies to address obesity and eating disorders.

19.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36178121

RESUMO

Differentiation of stem cells in the plant apex gives rise to aerial tissues and organs. Presently, we lack a lineage map of the shoot apex cells in woody perennials - a crucial gap considering their role in determining primary and secondary growth. Here, we used single-nuclei RNA-sequencing to determine cell type-specific transcriptomes of the Populus vegetative shoot apex. We identified highly heterogeneous cell populations clustered into seven broad groups represented by 18 transcriptionally distinct cell clusters. Next, we established the developmental trajectories of the epidermis, leaf mesophyll and vascular tissue. Motivated by the high similarities between Populus and Arabidopsis cell population in the vegetative apex, we applied a pipeline for interspecific single-cell gene expression data integration. We contrasted the developmental trajectories of primary phloem and xylem formation in both species, establishing the first comparison of vascular development between a model annual herbaceous and a woody perennial plant species. Our results offer a valuable resource for investigating the principles underlying cell division and differentiation conserved between herbaceous and perennial species while also allowing us to examine species-specific differences at single-cell resolution.


Assuntos
Arabidopsis , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Populus/genética , Populus/metabolismo , RNA/metabolismo , Transcriptoma/genética , Xilema/metabolismo
20.
FASEB J ; 38(8): e23615, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38651657

RESUMO

Athletes increasingly engage in repeated sprint training consisting in repeated short all-out efforts interspersed by short recoveries. When performed in hypoxia (RSH), it may lead to greater training effects than in normoxia (RSN); however, the underlying molecular mechanisms remain unclear. This study aimed at elucidating the effects of RSH on skeletal muscle metabolic adaptations as compared to RSN. Sixteen healthy young men performed nine repeated sprint training sessions in either normoxia (FIO2 = 0.209, RSN, n = 7) or normobaric hypoxia (FIO2 = 0.136, RSH, n = 9). Before and after the training period, exercise performance was assessed by using repeated sprint ability (RSA) and Wingate tests. Vastus lateralis muscle biopsies were performed to investigate muscle metabolic adaptations using proteomics combined with western blot analysis. Similar improvements were observed in RSA and Wingate tests in both RSN and RSH groups. At the muscle level, RSN and RSH reduced oxidative phosphorylation protein content but triggered an increase in mitochondrial biogenesis proteins. Proteomics showed an increase in several S100A family proteins in the RSH group, among which S100A13 most strongly. We confirmed a significant increase in S100A13 protein by western blot in RSH, which was associated with increased Akt phosphorylation and its downstream targets regulating protein synthesis. Altogether our data indicate that RSH may activate an S100A/Akt pathway to trigger specific adaptations as compared to RSN.


Assuntos
Adaptação Fisiológica , Hipóxia , Músculo Esquelético , Proteínas S100 , Transdução de Sinais , Humanos , Masculino , Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Adaptação Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Adulto Jovem , Proteínas S100/metabolismo , Adulto , Proteínas Proto-Oncogênicas c-akt/metabolismo , Exercício Físico/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa