Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 14: 62, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23360399

RESUMO

BACKGROUND: The molecular bases of mammalian pancreatic α cells higher resistance than ß to proinflammatory cytokines are very poorly defined. MicroRNAs are master regulators of cell networks, but only scanty data are available on their transcriptome in these cells and its alterations in diabetes mellitus. RESULTS: Through high-throughput real-time PCR, we analyzed the steady state microRNA transcriptome of murine pancreatic α (αTC1-6) and ß (ßTC1) cells: their comparison demonstrated significant differences. We also characterized the alterations of αTC1-6 cells microRNA transcriptome after treatment with proinflammatory cytokines. We focused our study on two microRNAs, miR-296-3p and miR-298-5p, which were: (1) specifically expressed at steady state in αTC1-6, but not in ßTC1 or INS-1 cells; (2) significantly downregulated in αTC1-6 cells after treatment with cytokines in comparison to untreated controls. These microRNAs share more targets than expected by chance and were co-expressed in αTC1-6 during a 6-48 h time course treatment with cytokines. The genes encoding them are physically clustered in the murine and human genome. By exploiting specific microRNA mimics, we demonstrated that experimental upregulation of miR-296-3p and miR-298-5p raised the propensity to apoptosis of transfected and cytokine-treated αTC1-6 cells with respect to αTC1-6 cells, treated with cytokines after transfection with scramble molecules. Both microRNAs control the expression of IGF1Rß, its downstream targets phospho-IRS-1 and phospho-ERK, and TNFα. Our computational analysis suggests that MAFB (a transcription factor exclusively expressed in pancreatic α cells within adult rodent islets of Langerhans) controls the expression of miR-296-3p and miR-298-5p. CONCLUSIONS: Altogether, high-throughput microRNA profiling, functional analysis with synthetic mimics and molecular characterization of modulated pathways strongly suggest that specific downregulation of miR-296-3p and miR-298-5p, coupled to upregulation of their targets as IGF1Rß and TNFα, is a major determinant of mammalian pancreatic α cells resistance to apoptosis induction by cytokines.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Citocinas/farmacologia , Células Secretoras de Glucagon/citologia , Células Secretoras de Insulina/citologia , MicroRNAs/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , MicroRNAs/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Transfecção
2.
Front Cell Neurosci ; 10: 51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973465

RESUMO

Vascular dementia (VaD) is a pathogenetically heterogeneous neuropsychiatric syndrome, mainly characterized by cognitive impairment. Among dementias, it is second by incidence after Alzheimer's dementia (AD). VaD biomolecular bases have been poorly characterized, but vascular-linked factors affecting the CNS and its functions are generally hypothesized to perform a major role, together with cardiovascular and immunological factors. miRNAs, which perform critically important biomolecular roles within cell networks, are also found in biological fluids as circulating miRNAs (cmiRNAs). We hypothesized that differentially expressed (DE) cmiRNAs in plasma from VaD patients could be applied to diagnose VaD through liquid biopsies; these profiles also could allow to start investigating VaD molecular bases. By exploiting TaqMan Low-Density Arrays and single TaqMan assays, miR-10b*, miR29a-3p, and miR-130b-3p were discovered and validated as significantly downregulated DE cmiRNAs in VaD patients compared to unaffected controls (NCs). These miRNAs also were found to be significantly downregulated in a matched cohort of AD patients, but miR-130b-3p levels were lower in AD than in VaD. A negative correlation was detected between miR-29a and miR-130b expression and cognitive impairment in VaD and AD, respectively. Receiver operating characteristic curves demonstrated that decreased plasma levels of miR-10b*, miR29a-3p, and miR-130b-3p allow to discriminate VaD and AD patients from NCs. Furthermore, the concurrent downregulation of both miR-10b* and miR-130b-3p in VaD showed an area under the curve (AUC) of 0.789 (p < 0.0001) with 75% of sensitivity and 72% of specificity, whereas an AUC of 0.789 (p < 0.0001) with 92% of sensitivity and 81% of specificity was found for both in AD. The miRNAs profiles reported in this paper pave the way to translational applications to molecular VaD diagnosis, but they also should allow to further investigate on its molecular bases.

3.
Mol Brain ; 8: 44, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-26205656

RESUMO

BACKGROUND: Tourette Syndrome (TS) is a highly prevalent childhood neuropsychiatric disorder (about 1 %), characterized by multiple motor and one or more vocal tics. The syndrome is commonly associated to comorbid conditions (e.g., Attention Deficit Hyperactivity Disorder and Obsessive Compulsive Disorder), which considerably aggravate clinical symptoms and complicate diagnosis and treatment. To date, TS molecular bases are unknown and its molecular diagnosis is unfeasible. RESULTS: Due to their master role within cell networks and pathways both in physiology as in pathology, we sought to determine the transcriptome of circulating miRNAs in TS patients: by TaqMan Low Density Arrays, we profiled the expression in serum of 754 miRNAs in six TS patients and three unaffected controls (NCs) (discovery set). These data were validated by single TaqMan assays on serum from 52 TS patients and 15 NCs (validation set). Network and Gene-ontology analysis were performed by using Cytoscape and Babelomics server. We found that miR-429 is significantly underexpressed in TS patients with respect to NCs. Decreased serum levels of miR-429 allowed us to discriminate TS patients from NCs with 95 % of sensitivity and 42 % of specificity. Intriguingly, computational analysis of the network comprising miR-429 targets demonstrates their involvement in differentiation of midbrain and hindbrain and synaptic transmission. CONCLUSIONS: Our data open the way to further molecular characterization of TS and eventual identification of the corresponding genotypes. Circulating miR-429 may be immediately useful as sensitive molecular biomarker to support TS diagnosis, actually based only on DSM-V criteria.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs/sangue , MicroRNAs/genética , Síndrome de Tourette/sangue , Síndrome de Tourette/genética , Criança , Demografia , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Curva ROC , Reprodutibilidade dos Testes , Síndrome de Tourette/psicologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa