Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(7): 848-852, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37106132

RESUMO

Solid-state electrolytes overcome many challenges of present-day lithium ion batteries, such as safety hazards and dendrite formation1,2. However, detailed understanding of the involved lithium dynamics is missing due to a lack of in operando measurements with chemical and interfacial specificity. Here we investigate a prototypical solid-state electrolyte using linear and nonlinear extreme-ultraviolet spectroscopies. Leveraging the surface sensitivity of extreme-ultraviolet-second-harmonic-generation spectroscopy, we obtained a direct spectral signature of surface lithium ions, showing a distinct blueshift relative to bulk absorption spectra. First-principles simulations attributed the shift to transitions from the lithium 1 s state to hybridized Li-s/Ti-d orbitals at the surface. Our calculations further suggest a reduction in lithium interfacial mobility due to suppressed low-frequency rattling modes, which is the fundamental origin of the large interfacial resistance in this material. Our findings pave the way for new optimization strategies to develop these electrochemical devices via interfacial engineering of lithium ions.


Assuntos
Eletrólitos , Lítio , Fontes de Energia Elétrica , Engenharia , Software
2.
Nat Mater ; 21(7): 795-803, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35501365

RESUMO

Intercalation-type metal oxides are promising negative electrode materials for safe rechargeable lithium-ion batteries due to the reduced risk of Li plating at low voltages. Nevertheless, their lower energy and power density along with cycling instability remain bottlenecks for their implementation, especially for fast-charging applications. Here, we report a nanostructured rock-salt Nb2O5 electrode formed through an amorphous-to-crystalline transformation during repeated electrochemical cycling with Li+. This electrode can reversibly cycle three lithiums per Nb2O5, corresponding to a capacity of 269 mAh g-1 at 20 mA g-1, and retains a capacity of 191 mAh g-1 at a high rate of 1 A g-1. It exhibits superb cycling stability with a capacity of 225 mAh g-1 at 200 mA g-1 for 400 cycles, and a Coulombic efficiency of 99.93%. We attribute the enhanced performance to the cubic rock-salt framework, which promotes low-energy migration paths. Our work suggests that inducing crystallization of amorphous nanomaterials through electrochemical cycling is a promising avenue for creating unconventional high-performance metal oxide electrode materials.

3.
Langmuir ; 33(43): 11911-11918, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28927271

RESUMO

Irreversible changes to the morphology of glassy carbon (GC) electrodes at potentials between 3.5 and 4.5 V vs Li/Li+ in propylene carbonate (PC) solvent containing lithium hexafluorophosphate (LiPF6) are reported. Analysis of cyclic voltammetry (CV) experiments in the range of 3.0 to 6.0 V shows that the capacitance of the electrochemical double-layer increased irreversibly beginning at potentials as low as 3.5 V. These changes resulted from nonfaradaic interactions, and were not due to oxidative electrochemical decomposition of the electrode and electrolyte, anion intercalation, nor caused by the presence of water, a common impurity in organic electrolyte solutions. Atomic force microscopy (AFM) images revealed that increasing the potential of a bare GC surface from 3.0 to 4.5 V resulted in a 6× increase in roughness, in good agreement with the changes in double-layer capacitance. Treating the GC surface via exposure to trichloromethylsilane vapors resulted in a stable double-layer capacitance between 3.0 and 4.5 V, and this treatment also correlated with less roughening. These results inform future efforts aimed at controlling surface composition and morphology of carbon electrodes.

4.
Small ; 10(4): 725-33, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24115555

RESUMO

Electromechanical coupling is a topic of current interest in nanostructures, such as metallic and semiconducting nanowires, for a variety of electronic and energy applications. As a result, the determination of structure-property relations that dictate the electromechanical coupling requires the development of experimental tools to perform accurate metrology. Here, a novel micro-electro-mechanical system (MEMS) that allows integrated four-point, uniaxial, electromechanical measurements of freestanding nanostructures in-situ electron microscopy, is reported. Coupled mechanical and electrical measurements are carried out for penta-twinned silver nanowires, their resistance is identified as a function of strain, and it is shown that resistance variations are the result of nanowire dimensional changes. Furthermore, in situ SEM piezoresistive measurements on n-type, [111]-oriented silicon nanowires up to unprecedented levels of ∼7% strain are demonstrated. The piezoresistance coefficients are found to be similar to bulk values. For both metallic and semiconducting nanowires, variations of the contact resistance as strain is applied are observed. These variations must be considered in the interpretation of future two-point electromechanical measurements.

5.
Faraday Discuss ; 176: 125-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25490237

RESUMO

Understanding the functional links between the stability and reactivity of oxide materials during the oxygen evolution reaction (OER) is one key to enabling a vibrant hydrogen economy capable of competing with fossil fuel-based technologies. In this work, by focusing on the surface chemistry of monometallic Ru oxide in acidic and alkaline environments, we found that the kinetics of the OER are almost entirely controlled by the stability of the Ru surface atoms. The same activity-stability relationship was found for more complex, polycrystalline and single-crystalline SrRuO(3) thin films in alkaline solutions. We propose that the electrochemical transformation of either water (acidic solutions) or hydroxyl ions (alkaline solutions) to di-oxygen molecules takes place at defect sites that are inherently present on every electrode surface. During the OER, surface defects are also created by the corrosion of the Ru ions. The dissolution is triggered by the potential-dependent change in the valence state (n) of Ru: from stable but inactive Ru(4+) to unstable but active Ru(n>4+). We conclude that if the oxide is stable then it is completely inactive for the OER. A practical consequence is that the best materials for the OER should balance stability and activity in such a way that the dissolution rate of the oxide is neither too fast nor too slow.

6.
Nano Lett ; 13(1): 199-206, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23237496

RESUMO

The vapor-liquid-solid (VLS) process of semiconductor nanowire growth is an attractive approach to low-dimensional materials and heterostructures because it provides a mechanism to modulate, in situ, nanowire composition and doping, but the ultimate limits on doping control are ultimately dictated by the growth process itself. Under widely used conditions for the chemical vapor deposition growth of Si and Ge nanowires from a Au catalyst droplet, we find that dopants incorporated from the liquid are not uniformly distributed. Specifically, atom probe tomographic analysis revealed up to 100-fold enhancements in dopant concentration near the VLS trijunction in both B-doped Si and P-doped Ge nanowires. We hypothesize that radial and azimuthal inhomogeneities arise from a faceted liquid-solid interface present during nanowire growth, and we present a simple model to account for the distribution. As the same segregation behavior was observed in two distinct semiconductors with different dopants, the observed inhomogeneity is likely to be present in other VLS grown nanowires.

7.
Nano Lett ; 13(12): 6183-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224834

RESUMO

Barrier heights between metal contacts and silicon nanowires were measured using spectrally resolved scanning photocurrent microscopy (SPCM). Illumination of the metal-semiconductor junction with sub-bandgap photons generates a photocurrent dominated by internal photoemission of hot electrons. Analysis of the dependence of photocurrent yield on photon energy enables quantitative extraction of the barrier height. Enhanced doping near the nanowire surface, mapped quantitatively with atom probe tomography, results in a lowering of the effective barrier height. Occupied interface states produce an additional lowering that depends strongly on diameter. The doping and diameter dependencies are explained quantitatively with finite element modeling. The combined tomography, electrical characterization, and numerical modeling approach represents a significant advance in the quantitative analysis of transport mechanisms at nanoscale interfaces that can be extended to other nanoscale devices and heterostructures.


Assuntos
Nanofios/química , Semicondutores , Silício/química , Elétrons , Nanotecnologia , Fótons
8.
Nano Lett ; 13(6): 2598-604, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23668801

RESUMO

Controlling axial and radial dopant profiles in nanowires is of utmost importance for NW-based devices, as the formation of tightly controlled electrical junctions is crucial for optimization of device performance. Recently, inhomogeneous dopant profiles have been observed in vapor­liquid­solid grown nanowires, but the underlying mechanisms that produce these inhomogeneities have not been completely characterized. In this work, P-doping profiles of axially modulation-doped Si nanowires were studied using nanoprobe scanning Auger microscopy and Kelvin probe force microscopy in order to distinguish between vapor­liquid­solid doping and the vapor­solid doping. We find that both mechanisms result in radially inhomogeneous doping, specifically, a lightly doped core surrounded by a heavily doped shell structure. Careful design of dopant modulation enables the contributions of the two mechanisms to be distinguished, revealing a surprisingly strong reservoir effect that significantly broadens the axial doping junctions.

9.
Nano Lett ; 13(9): 4511-6, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23944904

RESUMO

The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governs the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability, and phase equilibrium.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Silício/química , Ligas , Elétrons , Íons , Nanoestruturas/química , Transição de Fase
10.
Nano Lett ; 13(12): 6106-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224495

RESUMO

Over the past few years, in situ transmission electron microscopy (TEM) studies of lithium ion batteries using an open-cell configuration have helped us to gain fundamental insights into the structural and chemical evolution of the electrode materials in real time. In the standard open-cell configuration, the electrolyte is either solid lithium oxide or an ionic liquid, which is point-contacted with the electrode. This cell design is inherently different from a real battery, where liquid electrolyte forms conformal contact with electrode materials. The knowledge learnt from open cells can deviate significantly from the real battery, calling for operando TEM technique with conformal liquid electrolyte contact. In this paper, we developed an operando TEM electrochemical liquid cell to meet this need, providing the configuration of a real battery and in a relevant liquid electrolyte. To demonstrate this novel technique, we studied the lithiation/delithiation behavior of single Si nanowires. Some of lithiation/delithation behaviors of Si obtained using the liquid cell are consistent with the results from the open-cell studies. However, we also discovered new insights different from the open cell configuration-the dynamics of the electrolyte and, potentially, a future quantitative characterization of the solid electrolyte interphase layer formation and structural and chemical evolution.


Assuntos
Lítio/química , Nanofios/química , Silício/química , Fontes de Energia Elétrica , Eletroquímica , Eletrodos , Microscopia Eletrônica de Transmissão , Propriedades de Superfície
11.
ACS Appl Mater Interfaces ; 16(1): 435-443, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147639

RESUMO

Discovery of stable and efficient electrolytes that are compatible with magnesium metal anodes and high-voltage cathodes is crucial to enabling energy storage technologies that can move beyond existing Li-ion systems. Many promising electrolytes for magnesium anodes have been proposed with chloride-based systems at the forefront; however, Cl-containing electrolytes lack the oxidative stability required by high-voltage cathodes. In this work, we report magnesium trifluoromethanesulfonate (triflate) as a viable coanion for Cl-free, mixed-anion magnesium electrolytes. The addition of triflate to electrolytes containing bis(trifluoromethane sulfonyl) imide (TFSI-) anions yields significantly improved Coulombic efficiency, up to a 100 mV decrease in the plating/stripping overpotential, improved tolerance to trace H2O, and improved oxidative stability (0.35 V improvement compared to that of hybrid TFSI-Cl electrolytes). Based on 19F nuclear magnetic resonance and Raman spectroscopy measurements, we propose that these improvements in performance are driven by the formation of mixed-anion contact ion pairs, where both triflate and TFSI- are coordinated to Mg2+ in the electrolyte bulk. The formation of this mixed-anion magnesium complex is further predicted by the density functional theory to be thermodynamically driven. Collectively, this work outlines the guiding principles for the improved design of next-generation electrolytes for magnesium batteries.

12.
J Phys Chem Lett ; 15(19): 5096-5102, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38709010

RESUMO

Multivalent-ion battery technologies are increasingly attractive options for meeting diverse energy storage needs. Calcium ion batteries (CIB) are particularly appealing candidates for their earthly abundance, high theoretical volumetric energy density, and relative safety advantages. At present, only a few Ca-ion electrolyte systems are reported to reversibly plate at room temperature: for example, aluminates and borates, including Ca[TPFA]2, where [TPFA]- = [Al(OC(CF3)3)4]- and Ca[B(hfip)4]2, [B(hfip)4]2- = [B(OCH(CF3)2)4]-. Analyzing the structure of these salts reveals a common theme: the prevalent use of a weakly coordinating anion (WCA) consisting of a tetracoordinate aluminum/boron (Al/B) center with fluorinated alkoxides. Leveraging the concept of theory-aided design, we report an innovative, one-pot synthesis of two new calcium-ion electrolyte salts (Ca[Al(tftb)4]2, Ca[Al(hftb)4]2) and two reported salts (Ca[Al(hfip)4]2 and Ca[TPFA]2) where hfip = (-OCH(CF3)2), tftb = (-OC(CF3)(Me)2), hftb = (-OC(CF3)2(Me)), [TPFA]- = [Al(OC(CF3)3)4]-. We also reveal the dependence of Coulombic efficiency on their inherent propensity for cation-anion coordination.

13.
ACS Energy Lett ; 9(1): 201-208, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38230374

RESUMO

Aqueous zinc-ion batteries (ZIBs) employing zinc metal anodes are gaining traction as batteries for moderate to long duration energy storage at scale. However, corrosion of the zinc metal anode through reaction with water limits battery efficiency. Much research in the past few years has focused on additives that decrease hydrogen evolution, but the precise mechanisms by which this takes place are often understudied and remain unclear. In this work, we study the role of an acetonitrile antisolvent additive in improving the performance of aqueous ZnSO4 electrolytes using experimental and computational techniques. We demonstrate that acetonitrile actively modifies the interfacial chemistry during Zn metal plating, which results in improved performance of acetonitrile-containing electrolytes. Collectively, this work demonstrates the effectiveness of solvent additive systems in battery performance and durability and provides a new framework for future efforts to optimize ion transport and performance in ZIBs.

14.
Nat Commun ; 15(1): 6084, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030160

RESUMO

Tuning the properties of a pair of entangled electron and hole in a light-induced exciton is a fundamentally intriguing inquiry for quantum science. Here, using semiconducting hybrid perovskite as an exploratory platform, we discover that Nd2+-doped CH3NH3PbI3 (MAPbI3) perovskite exhibits a Kondo-like exciton-spin interaction under cryogenic and photoexcitation conditions. The feedback to such interaction between excitons in perovskite and the localized spins in Nd2+ is observed as notably prolonged carrier lifetimes measured by time-resolved photoluminescence, ~10 times to that of pristine MAPbI3 without Nd2+ dopant. From a mechanistic standpoint, such extended charge separation states are the consequence of the trap state enabled by the antiferromagnetic exchange interaction between the light-induced exciton and the localized 4 f spins of the Nd2+ in the proximity. Importantly, this Kondo-like exciton-spin interaction can be modulated by either increasing Nd2+ doping concentration that enhances the coupling between the exciton and Nd2+ 4 f spins as evidenced by elongated carrier lifetime, or by using an external magnetic field that can nullify the spin-dependent exchange interaction therein due to the unified orientations of Nd2+ spin angular momentum, thereby leading to exciton recombination at the dynamics comparable to pristine MAPbI3.

15.
ACS Appl Mater Interfaces ; 15(21): 26047-26059, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204772

RESUMO

Composite polymer electrolytes (CPEs) are attractive materials for solid-state lithium metal batteries, owing to their high ionic conductivity from ceramic ionic conductors and flexibility from polymer components. As with all lithium metal batteries, however, CPEs face the challenge of dendrite formation and propagation. Not only does this lower the critical current density (CCD) before cell shorting, but the uncontrolled growth of lithium deposits may limit Coulombic efficiency (CE) by creating dead lithium. Here, we present a fundamental study on how the ceramic components of CPEs influence these characteristics. CPE membranes based on poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) with Li7La3Zr2O12 (LLZO) nanofibers were fabricated with industrially relevant roll-to-roll manufacturing techniques. Galvanostatic cycling with lithium symmetric cells shows that the CCD can be tripled by including 50 wt % LLZO, but half-cell cycling reveals that this comes at the cost of CE. Varying the LLZO loading shows that even a small amount of LLZO drastically lowers the CE, from 88% at 0 wt % LLZO to 77% at just 2 wt % LLZO. Mesoscale modeling reveals that the increase in CCD cannot be explained by an increase in the macroscopic or microscopic stiffness of the electrolyte; only the microstructure of the LLZO nanofibers in the PEO-LiTFSI matrix slows dendrite growth by presenting physical barriers that the dendrites must push or grow around. This tortuous lithium growth mechanism around the LLZO is corroborated with mass spectrometry imaging. This work highlights important elements to consider in the design of CPEs for high-efficiency lithium metal batteries.

16.
Adv Mater ; 35(21): e2300673, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929566

RESUMO

Sulfide-based solid-state electrolytes (SSEs) exhibit many tantalizing properties including high ionic conductivity and favorable mechanical properties for next-generation solid-state batteries. Widespread adoption of these materials is hindered by their intrinsic instability under ambient conditions, which makes them difficult to process at scale, and instability at the Li||SSE and cathode||SSE interfaces, which limits cell performance and lifetime. Atomic layer deposition is leveraged to grow thin Al2 O3 coatings on Li6 PS5 Cl powders to address both issues simultaneously. These coatings can be directly grown onto Li6 PS5 Cl particles with negligible chemical modification of the underlying material and enable exposure of powders to pure and H2 O-saturated oxygen environments for ≥4 h with minimal reactivity, compared with significant degradation of the uncoated powder. Pellets fabricated from coated powders exhibit ionic conductivities up to 2× higher than those made from uncoated material, with a simultaneous decrease in electronic conductivity and significant suppression of chemical reactivity at the Li-SSE interface. These benefits result in significantly improved room temperature cycle life at high capacity and current density. It is hypothesized that this enhanced performance derives from improved intergranular properties and improved Li metal adhesion. This work points to a completely new framework for designing active, stable, and scalable materials for next-generation solid-state batteries.

17.
ACS Appl Mater Interfaces ; 15(41): 48072-48084, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37805993

RESUMO

Predictive understanding of the molecular interaction of electrolyte ions and solvent molecules and their chemical reactivity on electrodes has been a major challenge but is essential for addressing instabilities and surface passivation that occur at the electrode-electrolyte interface of multivalent magnesium batteries. In this work, the isolated intrinsic reactivities of prominent chemical species present in magnesium bis(trifluoromethanesulfonimide) (Mg(TFSI)2) in diglyme (G2) electrolytes, including ionic (TFSI-, [Mg(TFSI)]+, [Mg(TFSI):G2]+, and [Mg(TFSI):2G2]+) as well as neutral molecules (G2) on a well-defined magnesium vanadate cathode (MgV2O4) surface, have been studied using a combination of first-principles calculations and multimodal spectroscopy analysis. Our calculations show that nonsolvated [Mg(TFSI)]+ is the strongest adsorbing species on the MgV2O4 surface compared with all other ions while partially solvated [Mg(TFSI):G2]+ is the most reactive species. The cleavage of C-S bonds in TFSI- to form CF3- is predicted to be the most desired pathway for all ionic species, which is followed by the cleavage of C-O bonds of G2 to yield CH3+ or OCH3- species. The strong stabilization and electron transfer between ionic electrolyte species and MgV2O4 is found to significantly favor these decomposition reactions on the surface compared with intrinsic gas-phase dissociation. Experimentally, we used state-of-the-art ion soft landing to selectively deposit mass-selected TFSI-, [Mg(TFSI):G2]+, and [Mg(TFSI):2G2]+ on a MgV2O4 thin film to form a well-defined electrolyte-MgV2O4 interface. Analysis of the soft-landed interface using X-ray photoelectron, X-ray absorption near-edge structure, electron energy-loss spectroscopies, as well as transmission electron microscopy confirmed the presence of decomposition species (e.g., MgFx, carbonates) and the higher amount of MgFx with [Mg(TFSI):G2]+ formed in the interfacial region, which corroborates the theoretical observation. Overall, these results indicate that Mg2+ desolvation results in electrolyte decomposition facilitated by surface adsorption, charge transfer, and the formation of passivating fluorides on the MgV2O4 cathode surface. This work provides the first evidence of the primary mechanisms leading to electrolyte decomposition at high-voltage oxide surfaces in multivalent batteries and suggests that the design of new, anodically stable electrolytes must target systems that facilitate cation desolvation.

18.
Opt Express ; 20(5): 5127-32, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22418318

RESUMO

Raman spectroscopy is a powerful tool for investigating many fundamental properties of nanostructures, but extrinsic effects including background scattering and laser-induced heating can limit the analysis of intrinsic properties. A thin SiO2 dielectric coating is found to enhance the Raman signal from a single Ge nanowire by a factor of two as a result of wave interference. Consequently, the coated nanowire experiences less heating than a bare nanowire at equivalent signal intensities. The results demonstrate a simple and effective method to extend the limits of Raman analysis on single nanostructures and facilitate their characterization.


Assuntos
Germânio/química , Nanotubos/química , Nanotubos/ultraestrutura , Dióxido de Silício/química , Análise Espectral Raman/métodos , Adsorção , Impedância Elétrica , Luz , Teste de Materiais , Espalhamento de Radiação
19.
Nano Lett ; 11(8): 3108-12, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21744779

RESUMO

In this Letter we report the atypical self-activation of gallium (Ga) implanted by focused ion beam (FIB) into germanium nanowires (Ge-NWs). By FIB implantation of 30 keV Ga(+) ions at room temperature, the Ge-NW conductivity increases up to 3 orders of magnitude with increasing ion fluence. Cu(3)Ge heterostructures were formed by diffusion to ensure well-defined contacts to the NW and enable two point I/V measurements. Additional four point measurements prove that the conductivity enhancement emerges from the modification of the wires themselves and not from contact property modifications. The Ga distribution in the implanted Ge-NWs was measured using atom probe tomography. For high ion fluences, and beginning amorphization of the NWs, the conductivity decreases exponentially. Temperature dependent conductivity measurements show strong evidence for an in situ doping of the Ge-NWs without any further annealing. Finally the feasibility of improving the device performance of top-gated Ge-NW MOSFETs by FIB implantation was shown.

20.
Ultrason Sonochem ; 90: 106212, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36327924

RESUMO

Graphene is a valuable and useful nanomaterial due to its exceptionally high tensile strength, electrical conductivity and transparency, as well as the ability to tune its materials properties via functionalization. One of the most important features needed to integrate functionalized graphene into products via scalable processing is the effectiveness of graphene dispersion in aqueous and organic solvents. In this study, we aimed to achieve the functionalization of reduced graphene oxide (rGO) by sonication in a one-step process using polyvinyl alcohol (PVA) as a model molecule to be bound to the rGO surface. We investigated the influence of the sonication energy on the efficacy of rGO functionalization. The correlation between the performance of the high-intensity ultrasonic horn and the synthesis of the PVA functionalized rGO was thoroughly investigated by TGA coupled with MS, and IR, Raman, XPS, Laser diffraction, and SEM analysis. The results show that the most soluble PVA-functionalized rGO is achieved at 50% of the ultrasonic horn amplitude. Analysis of cavitation dynamics revealed that in the near vicinity of the horn it is most aggressive at the highest amplitude (60%). This causes rGO flakes to break into smaller domains, which negatively affects the functionalization process. On the other hand, the maximum of the pressure pulsations far away from the horn is reached at 40% amplitude, as the pressure oscillations are attenuated significantly in the 2-phase flow region at higher amplitudes. These observations corelate well with the measured degree of functionalization, where the optimum functionalized rGO dispersion is reached at 50% horn amplitude, and generally imply that cavitation intensity must be carefully adjusted to achieve optimal rGO functionalization.


Assuntos
Grafite , Nanoestruturas , Água , Álcool de Polivinil
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa