Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 135(23): 8585-93, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23676140

RESUMO

The class Ia ribonucleotide reductase (RNR) from Escherichia coli employs a free-radical mechanism, which involves bidirectional translocation of a radical equivalent or "hole" over a distance of ~35 Å from the stable diferric/tyrosyl-radical (Y122(•)) cofactor in the ß subunit to cysteine 439 (C439) in the active site of the α subunit. This long-range, intersubunit electron transfer occurs by a multistep "hopping" mechanism via formation of transient amino acid radicals along a specific pathway and is thought to be conformationally gated and coupled to local proton transfers. Whereas constituent amino acids of the hopping pathway have been identified, details of the proton-transfer steps and conformational gating within the ß sununit have remained obscure; specific proton couples have been proposed, but no direct evidence has been provided. In the key first step, the reduction of Y122(•) by the first residue in the hopping pathway, a water ligand to Fe1 of the diferric cluster was suggested to donate a proton to yield the neutral Y122. Here we show that forward radical translocation is associated with perturbation of the Mössbauer spectrum of the diferric cluster, especially the quadrupole doublet associated with Fe1. Density functional theory (DFT) calculations verify the consistency of the experimentally observed perturbation with that expected for deprotonation of the Fe1-coordinated water ligand. The results thus provide the first evidence that the diiron cluster of this prototypical class Ia RNR functions not only in its well-known role as generator of the enzyme's essential Y122(•), but also directly in catalysis.


Assuntos
Escherichia coli/enzimologia , Compostos Férricos/metabolismo , Prótons , Ribonucleotídeo Redutases/metabolismo , Transporte de Elétrons , Escherichia coli/metabolismo , Compostos Férricos/química , Estrutura Molecular , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/classificação
2.
Biochemistry ; 51(8): 1607-16, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22304240

RESUMO

The direct interrogation of fleeting intermediates by rapid-mixing kinetic methods has significantly advanced our understanding of enzymes that utilize dioxygen. The gas's modest aqueous solubility (<2 mM at 1 atm) presents a technical challenge to this approach, because it limits the rate of formation and extent of accumulation of intermediates. This challenge can be overcome by use of the heme enzyme chlorite dismutase (Cld) for the rapid, in situ generation of O(2) at concentrations far exceeding 2 mM. This method was used to define the O(2) concentration dependence of the reaction of the class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis, in which the enzyme's Mn(IV)/Fe(III) cofactor forms from a Mn(II)/Fe(II) complex and O(2) via a Mn(IV)/Fe(IV) intermediate, at effective O(2) concentrations as high as ~10 mM. With a more soluble receptor, myoglobin, an O(2) adduct accumulated to a concentration of >6 mM in <15 ms. Finally, the C-H-bond-cleaving Fe(IV)-oxo complex, J, in taurine:α-ketoglutarate dioxygenase and superoxo-Fe(2)(III/III) complex, G, in myo-inositol oxygenase, and the tyrosyl-radical-generating Fe(2)(III/IV) intermediate, X, in Escherichia coli RNR, were all accumulated to yields more than twice those previously attained. This means of in situ O(2) evolution permits a >5 mM "pulse" of O(2) to be generated in <1 ms at the easily accessible Cld concentration of 50 µM. It should therefore significantly extend the range of kinetic and spectroscopic experiments that can routinely be undertaken in the study of these enzymes and could also facilitate resolution of mechanistic pathways in cases of either sluggish or thermodynamically unfavorable O(2) addition steps.


Assuntos
Proteínas de Bactérias/química , Oxirredutases/química , Oxigênio/química , Chlamydia trachomatis , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Férricos/química , Compostos Ferrosos/química , Cinética , Manganês/química , Ribonucleotídeo Redutases/química , Espectroscopia de Mossbauer
3.
J Am Chem Soc ; 134(50): 20498-506, 2012 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-23157728

RESUMO

A class I ribonucleotide reductase (RNR) uses either a tyrosyl radical (Y(•)) or a Mn(IV)/Fe(III) cluster in its ß subunit to oxidize a cysteine residue ∼35 Å away in its α subunit, generating a thiyl radical that abstracts hydrogen (H(•)) from the substrate. With either oxidant, the inter-subunit "hole-transfer" or "radical-translocation" (RT) process is thought to occur by a "hopping" mechanism involving multiple tyrosyl (and perhaps one tryptophanyl) radical intermediates along a specific pathway. The hopping intermediates have never been directly detected in a Mn/Fe-dependent (class Ic) RNR nor in any wild-type (wt) RNR. The Mn(IV)/Fe(III) cofactor of Chlamydia trachomatis RNR assembles via a Mn(IV)/Fe(IV) intermediate. Here we show that this cofactor-assembly intermediate can propagate a hole into the RT pathway when α is present, accumulating radicals with EPR spectra characteristic of Y(•)'s. The dependence of Y(•) accumulation on the presence of substrate suggests that RT within this "super-oxidized" enzyme form is gated by the protein, and the failure of a ß variant having the subunit-interfacial pathway Y substituted by phenylalanine to support radical accumulation implies that the Y(•)(s) in the wt enzyme reside(s) within the RT pathway. Remarkably, two variant ß proteins having pathway substitutions rendering them inactive in their Mn(IV)/Fe(III) states can generate the pathway Y(•)'s in their Mn(IV)/Fe(IV) states and also effect nucleotide reduction. Thus, the use of the more oxidized cofactor permits the accumulation of hopping intermediates and the "hurdling" of engineered defects in the RT pathway.


Assuntos
Chlamydia trachomatis/enzimologia , Ribonucleotídeo Redutases/metabolismo , Sequência de Bases , Primers do DNA , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa