Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(17): e2117065119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35467979

RESUMO

High-grade serous ovarian cancer (HGSOC) is a lethal malignancy characterized by an immunosuppressive tumor microenvironment containing few tumor infiltrating lymphocytes (TILs) and an insensitivity to checkpoint inhibitor immunotherapies. Gains in the PTK2 gene encoding focal adhesion kinase (FAK) at Chr8 q24.3 occur in ∼70% of HGSOC tumors, and elevated FAK messenger RNA (mRNA) levels are associated with poor patient survival. Herein, we show that active FAK, phosphorylated at tyrosine-576 within catalytic domain, is significantly increased in late-stage HGSOC tumors. Active FAK costained with CD155, a checkpoint receptor ligand for TIGIT (T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains), in HGSOC tumors and a selective association between FAK and TIGIT checkpoint ligands were supported by patient transcriptomic database analysis. HGSOC tumors with high FAK expression were associated with low CD3 mRNA levels. Accordingly, late-stage tumors showed elevated active FAK staining and significantly lower levels of CD3+ TILs. Using the KMF (Kras, Myc, FAK) syngeneic ovarian tumor model containing spontaneous PTK2 (FAK) gene gains, the effects of tumor intrinsic genetic or oral small molecule FAK inhibitior (FAKi; VS-4718) were evaluated in vivo. Blocking FAK activity decreased tumor burden, suppressed ascites KMF-associated CD155 levels, and increased peritoneal TILs. The combination of FAKi with blocking TIGIT antibody (1B4) maintained elevated TIL levels and reduced TIGIT+ T regulatory cell levels, prolonged host survival, increased CXCL13 levels, and led to the formation of omental tertiary lymphoid structures. Collectively, our studies support FAK and TIGIT targeting as a rationale immunotherapy combination for HGSOC.


Assuntos
Neoplasias Ovarianas , Animais , Carcinoma Epitelial do Ovário , Feminino , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Terapia de Imunossupressão , Ligantes , Camundongos , Neoplasias Ovarianas/patologia , Receptores Imunológicos/metabolismo
2.
Oncologist ; 29(10): 887-893, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39013784

RESUMO

BACKGROUND: Despite complete resection, 20%-50% of patients with localized renal cell carcinoma (RCC) experience recurrence within 5 years. Accurate assessment of prognosis in high-risk patients would aid in improving outcomes. Here we evaluate the use of circulating tumor DNA (ctDNA) in RCC using banked samples and clinical data from a single institution. METHODS: The cohort consisted of 45 RCC patients (≥pT1b) who underwent complete resection. The presence of ctDNA in plasma was determined using a personalized, tumor-informed ctDNA assay (Signatera RUO, Natera, Inc.). Relationships with outcomes and other relevant clinical variables were assessed. The median follow-up was 62 months. RESULTS: Plasma ctDNA was detected in 18 out of 36 patients (50%) pre-operatively and was associated with increased tumor size (mean 9.3 cm vs. 7.0 cm, P < .05) and high Fuhrman grade (60% grades III-IV vs 27% grade II, P = .07). The presence of ctDNA, either pre-operatively or at any time post-operatively, was associated with inferior relapse-free survival (HR = 2.70, P = .046; HR = 3.23, P = .003, respectively). Among patients who were ctDNA positive at any time point, the sensitivity of relapse prediction was 84% with a PPV of 90%. Of note, ctDNA positivity at a post-surgical time point revealed a PPV of 100% and NPV of 64%. The lack of ctDNA detection at both time points yielded an NPV of 80%. CONCLUSIONS: Detection of plasma ctDNA using a personalized assay is prognostic of recurrence in patients with resected RCC. Herein, we describe a successful approach for its application and identify potential limitations to be addressed in future studies.


Assuntos
Carcinoma de Células Renais , DNA Tumoral Circulante , Neoplasias Renais , Humanos , Carcinoma de Células Renais/cirurgia , Carcinoma de Células Renais/sangue , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/mortalidade , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Feminino , Masculino , Prognóstico , Pessoa de Meia-Idade , Idoso , Neoplasias Renais/cirurgia , Neoplasias Renais/sangue , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/mortalidade , Adulto , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/genética , Idoso de 80 Anos ou mais
3.
J Pathol ; 249(2): 206-214, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31131879

RESUMO

Most high-grade serous carcinomas are thought to arise from Fallopian tube epithelium (FTE), but some likely arise outside of the tube, perhaps from ectopic tubal-type epithelium known as endosalpingiosis. Importantly, the origin of endosalpingiosis is poorly understood. The proximity of the tubal fimbriae to the ovaries has led to the proposal that disruptions in the ovarian surface that occur during ovulation may allow detached FTE to implant in the ovary and form tubal-type glands and cysts. An alternative model suggests that cells present in ectopic locations outside the Müllerian tract retain the capacity for multi-lineage differentiation and can form glands with tubal-type epithelium. We used double transgenic Ovgp1-iCreERT2 ;R26RLSL-eYFP mice, which express an eYFP reporter protein in OVGP1-positive tissues following transient tamoxifen (TAM) treatment, to track the fate of oviductal epithelial cells. Cohorts of adult mice were given TAM to activate eYFP expression in oviductal epithelium, and ovaries were examined at time points ranging from 2 days to 12 months post-TAM. To test whether superovulation might increase acquisition of endosalpingiosis, additional cohorts of TAM-treated mice underwent up to five cycles of superovulation and ovaries were examined at 1, 6, and 12 months post-TAM. Ovaries were sectioned in their entirety to identify endosalpingiosis. Immunohistochemical staining for PAX8, tubulin, OVGP1, and eYFP was employed to study endosalpingiosis lesions. Ovarian endosalpingiosis was identified in 14.2% of TAM-treated adult mice. The endosalpingiotic inclusion glands and cysts were lined by secretory and ciliated cells and expressed PAX8, tubulin, OVGP1, and eYFP. Neither age nor superovulation was associated with a significant increase in endosalpingiosis. Endosalpingiosis was also occasionally present in the ovaries of pre-pubertal mice. The findings imply that ovarian endosalpingiosis in the mouse does not likely arise as a consequence of detachment and implantation of tubal epithelium and other mechanisms may be relevant. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Linhagem da Célula , Células Epiteliais/patologia , Neoplasias das Tubas Uterinas/patologia , Tubas Uterinas/patologia , Neoplasias Císticas, Mucinosas e Serosas/patologia , Neoplasias Ovarianas/patologia , Ovário/patologia , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Rastreamento de Células/métodos , Células Epiteliais/metabolismo , Neoplasias das Tubas Uterinas/genética , Neoplasias das Tubas Uterinas/metabolismo , Tubas Uterinas/metabolismo , Feminino , Glicoproteínas/genética , Integrases/genética , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Camundongos Transgênicos , Neoplasias Císticas, Mucinosas e Serosas/genética , Neoplasias Císticas, Mucinosas e Serosas/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Ovário/metabolismo , Fator de Transcrição PAX8/metabolismo , RNA não Traduzido/genética , Superovulação , Tubulina (Proteína)/metabolismo
4.
Lasers Surg Med ; 52(10): 993-1009, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32311117

RESUMO

BACKGROUND AND OBJECTIVES: To determine the efficacy of targeted fluorescent biomarkers and multiphoton imaging to characterize early changes in ovarian tissue with the onset of cancer. STUDY DESIGN/MATERIALS AND METHODS: A transgenic TgMISIIR-TAg mouse was used as an animal model for ovarian cancer. Mice were injected with fluorescent dyes to bind to the folate receptor α, matrix metalloproteinases, and integrins. Half of the mice were treated with 4-vinylcyclohexene diepoxide (VCD) to simulate menopause. Widefield fluorescence imaging (WFI) and multiphoton imaging of the ovaries and oviducts were conducted at 4 and 8 weeks of age. The fluorescence signal magnitude was quantified, and texture features were derived from multiphoton imaging. Linear discriminant analysis was then used to classify mouse groups. RESULTS: Imaging features from both fluorescence imaging and multiphoton imaging show significant changes (P < 0.01) with age, VCD treatment, and genotype. The classification model is able to classify different groups to accuracies of 75.53%, 69.53%, and 86.76%, for age, VCD treatment, and genotype, respectively. Building a classification model using features from multiple modalities shows marked improvement over individual modalities. CONCLUSIONS: This study demonstrates that using WFI with targeted biomarkers, and multiphoton imaging with endogenous contrast shows promise for detecting early changes in ovarian tissue with the onset of cancer. The results indicate that multimodal imaging can provide higher sensitivity for classifying tissue types than using single modalities alone. Lasers Surg. Med. © 2020 Wiley Periodicals, Inc.


Assuntos
Neoplasias Ovarianas , Pós-Menopausa , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Imagem Óptica , Neoplasias Ovarianas/diagnóstico por imagem
5.
Gynecol Oncol ; 134(1): 104-11, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24786638

RESUMO

OBJECTIVE: Focal adhesion kinase (FAK) is overexpressed in serous ovarian cancer. Loss of merlin, a product of the neurofibromatosis 2 tumor suppressor gene, is being evaluated as a biomarker for FAK inhibitor sensitivity in mesothelioma. Connections between merlin and FAK in ovarian cancer remain undefined. METHODS: Nine human and two murine ovarian cancer cell lines were analyzed for growth in the presence of a small molecule FAK inhibitor (PF-271, also termed VS-6062) from 0.1 to 1 µM for 72 h. Merlin was evaluated by immunoblotting and immunostaining of a human ovarian tumor tissue array. Growth of cells was analyzed in an orthotopic tumor model and evaluated in vitro after stable shRNA-mediated merlin knockdown. RESULTS: Greater than 50% inhibition of OVCAR8, HEY, and ID8-IP ovarian carcinoma cell growth occurred with 0.1 µM PF-271 in anchorage-independent (p<0.001) but not in adherent culture conditions. PF-271-mediated reduction in FAK Y397 phosphorylation occurred independently of growth inhibition. Suspended growth of OVCAR3, OVCAR10, IGROV1, IGROV1-IP, SKOV3, SKOV3-IP, A2780, and 5009-MOVCAR was not affected by 0.1 µM PF-271. Merlin expression did not correlate with serous ovarian tumor grade or stage. PF-271 (30 mg/kg, BID) did not inhibit 5009-MOVCAR tumor growth and merlin knockdown in SKOV3-IP and OVCAR10 cells did not alter suspended cell growth upon PF-271 addition. CONCLUSIONS: Differential responsiveness to FAK inhibitor treatment was observed. Intrinsic low merlin protein level correlated with PF-271-mediated anchorage-independent growth inhibition, but reduction in merlin expression did not induce sensitivity to FAK inhibition. Merlin levels may be useful for patient stratification in FAK inhibitor trials.


Assuntos
Cistadenocarcinoma Seroso/tratamento farmacológico , Quinase 1 de Adesão Focal/antagonistas & inibidores , Neurofibromina 2/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/enzimologia , Cistadenocarcinoma Seroso/metabolismo , Feminino , Quinase 1 de Adesão Focal/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Neurofibromina 2/genética , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/metabolismo
6.
Oral Oncol ; 152: 106750, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547779

RESUMO

PURPOSE: The prognostic and predictive significance of pathologist-read tumor infiltrating lymphocytes (TILs) in head and neck cancers have been demonstrated through multiple studies over the years. TILs have not been broadly adopted clinically, perhaps due to substantial inter-observer variability. In this study, we developed a machine-based algorithm for TIL evaluation in head and neck cancers and validated its prognostic value in independent cohorts. EXPERIMENTAL DESIGN: A network classifier called NN3-17 was trained to identify and calculate tumor cells, lymphocytes, fibroblasts and "other" cells on hematoxylin-eosin stained sections using the QuPath software. These measurements were used to construct three predefined TIL variables. A retrospective collection of 154 head and neck squamous cell cancer cases was used as the discovery set to identify optimal association of TIL variables and survival. Two independent cohorts of 234 cases were used for validation. RESULTS: We found that electronic TIL variables were associated with favorable prognosis in both the HPV-positive and -negative cases. After adjusting for clinicopathologic factors, Cox regression analysis demonstrated that electronic total TILs% (p = 0.025) in the HPV-positive and electronic stromal TILs% (p < 0.001) in the HPV-negative population were independent markers of disease specific outcomes (disease free survival). CONCLUSIONS: Neural network TIL variables demonstrated independent prognostic value in validation cohorts of HPV-positive and HPV-negative head and neck cancers. These objective variables can be calculated by an open-source software and could be considered for testing in a prospective setting to assess potential clinical implications.


Assuntos
Algoritmos , Neoplasias de Cabeça e Pescoço , Linfócitos do Interstício Tumoral , Humanos , Linfócitos do Interstício Tumoral/patologia , Neoplasias de Cabeça e Pescoço/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Prognóstico , Idoso
7.
J Biol Chem ; 287(35): 29873-86, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22782891

RESUMO

Ovarian cancer is the leading cause of death among gynecological malignancies. It is detected at late stages when the disease is spread through the abdominal cavity in a condition known as peritoneal carcinomatosis. Thus, there is an urgent need to develop novel therapeutic interventions to target advanced stages of ovarian cancer. Mammary serine protease inhibitor (Maspin) represents an important metastasis suppressor initially identified in breast cancer. Herein we have generated a sequence-specific zinc finger artificial transcription factor (ATF) to up-regulate the Maspin promoter in aggressive ovarian cancer cell lines and to interrogate the therapeutic potential of Maspin in ovarian cancer. We found that although Maspin was expressed in some primary ovarian tumors, the promoter was epigenetically silenced in cell lines derived from ascites. Transduction of the ATF in MOVCAR 5009 cells derived from ascitic cultures of a TgMISIIR-TAg mouse model of ovarian cancer resulted in tumor cell growth inhibition, impaired cell invasion, and severe disruption of actin cytoskeleton. Systemic delivery of lipid-protamine-RNA nanoparticles encapsulating a chemically modified ATF mRNA resulted in inhibition of ovarian cancer cell growth in nude mice accompanied with Maspin re-expression in the treated tumors. Gene expression microarrays of ATF-transduced cells revealed an exceptional specificity for the Maspin promoter. These analyses identified novel targets co-regulated with Maspin in human short-term cultures derived from ascites, such as TSPAN12, that could mediate the anti-metastatic phenotype of the ATF. Our work outlined the first targeted, non-viral delivery of ATFs into tumors with potential clinical applications for metastatic ovarian cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Experimentais/metabolismo , Neoplasias Ovarianas/metabolismo , Fatores de Transcrição/biossíntese , Dedos de Zinco , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Serpinas/biossíntese , Tetraspaninas/genética , Tetraspaninas/metabolismo , Fatores de Transcrição/genética , Transcriptoma
8.
Nat Commun ; 14(1): 3350, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291133

RESUMO

Identifying germline BRCA1/2 mutation carriers is vital for reducing their risk of breast and ovarian cancer. To derive a serum miRNA-based diagnostic test we used samples from 653 healthy women from six international cohorts, including 350 (53.6%) with BRCA1/2 mutations and 303 (46.4%) BRCA1/2 wild-type. All individuals were cancer-free before and at least 12 months after sampling. RNA-sequencing followed by differential expression analysis identified 19 miRNAs significantly associated with BRCA mutations, 10 of which were ultimately used for classification: hsa-miR-20b-5p, hsa-miR-19b-3p, hsa-let-7b-5p, hsa-miR-320b, hsa-miR-139-3p, hsa-miR-30d-5p, hsa-miR-17-5p, hsa-miR-182-5p, hsa-miR-421, hsa-miR-375-3p. The final logistic regression model achieved area under the receiver operating characteristic curve 0.89 (95% CI: 0.87-0.93), 93.88% sensitivity and 80.72% specificity in an independent validation cohort. Mutated gene, menopausal status or having preemptive oophorectomy did not affect classification performance. Circulating microRNAs may be used to identify BRCA1/2 mutations in patients of high risk of cancer, offering an opportunity to reduce screening costs.


Assuntos
MicroRNA Circulante , MicroRNAs , Humanos , Feminino , MicroRNA Circulante/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , MicroRNAs/genética , Mutação
9.
Mol Cancer Ther ; 21(7): 1236-1245, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364610

RESUMO

Identification of ovarian cancer patient subpopulations with increased sensitivity to targeted therapies could offer significant clinical benefit. We report that 22% of the high-grade ovarian cancer tumors at diagnosis express CIP2A oncoprotein at low levels. Furthermore, regardless of their significantly lower likelihood of disease relapse after standard chemotherapy, a portion of relapsed tumors retain their CIP2A-deficient phenotype. Through a screen for therapeutics that would preferentially kill CIP2A-deficient ovarian cancer cells, we identified reactive oxygen species inducer APR-246, tested previously in ovarian cancer clinical trials. Consistent with CIP2A-deficient ovarian cancer subtype in humans, CIP2A is dispensable for development of MISIIR-Tag-driven mouse ovarian cancer tumors. Nevertheless, CIP2A-null ovarian cancer tumor cells from MISIIR-Tag mice displayed APR-246 hypersensitivity both in vitro and in vivo. Mechanistically, the lack of CIP2A expression hypersensitizes the ovarian cancer cells to APR-246 by inhibition of NF-κB activity. Accordingly, combination of APR-246 and NF-κB inhibitor compounds strongly synergized in killing of CIP2A-positive ovarian cancer cells. Collectively, the results warrant consideration of clinical testing of APR-246 for CIP2A-deficient ovarian cancer tumor subtype patients. Results also reveal CIP2A as a candidate APR-246 combination therapy target for ovarian cancer.


Assuntos
NF-kappa B , Neoplasias Ovarianas , Animais , Autoantígenos/genética , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Quinuclidinas
10.
Cancers (Basel) ; 14(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35804849

RESUMO

BACKGROUND: Individual serum biomarkers are neither adequately sensitive nor specific for use in screening the general population for ovarian cancer. The purpose of this study was to develop a multiprotein classifier to detect the early stages of ovarian cancer, when it is most treatable. METHODS: The Olink Proseek Multiplex Oncology II panel was used to simultaneously quantify the expression levels of 92 cancer-related proteins in sera. RESULTS: In the discovery phase, we generated a multiprotein classifier that included CA125, HE4, ITGAV, and SEZ6L, based on an analysis of sera from 116 women with early stage ovarian cancer and 336 age-matched healthy women. CA125 alone achieved a sensitivity of 87.9% at a specificity of 95%, while the multiprotein classifier resulted in an increased sensitivity of 91.4%, while holding the specificity fixed at 95%. The performance of the multiprotein classifier was validated in a second cohort comprised of 192 women with early stage ovarian cancer and 467 age-matched healthy women. The sensitivity at 95% specificity increased from 74.5% (CA125 alone) to 79.2% with the multiprotein classifier. In addition, the multiprotein classifier had a sensitivity of 95.1% at 98% specificity for late stage ovarian cancer samples and correctly classified 80.5% of the benign samples using the 98% specificity cutpoint. CONCLUSIONS: The inclusion of the proteins HE4, ITGAV, and SEZ6L improved the sensitivity and specificity of CA125 alone for the detection of early stages of ovarian cancer in serum samples. Furthermore, we identified several proteins that may be novel biomarkers of early stage ovarian cancer.

11.
J Pancreat Cancer ; 7(1): 39-47, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235374

RESUMO

Background: Sonic Hedgehog (Shh) is a tightly regulated membrane-associated morphogen and a known driver of tumorigenesis in pancreatic ductal adenocarcinoma (PDAC). After processing, Shh remains at the plasma membrane of Shh producing cells, thereby limiting its distribution and signal strength. In PDAC, the release of Shh from tumor cells is necessary to promote a tumor-permissive microenvironment. Mechanisms regulating Shh sequestration and/or release from tumor cells to signal distant stromal cells are not well known. Previously, our laboratory demonstrated that the Drosophila transmembrane protein Boi, sequesters Hh at the membrane of Hh-producing cells. In response to dietary cholesterol or in the absence of boi, Hh is constitutively released to promote proliferation in distant cells. In this study, we investigated the conservation of this mechanism in mammals by exploring the role of the human boi homolog, CDON, in PDAC. Methods: Using PDAC cell-lines BxPC-3, Capan-2, and MIA PaCa-2, along with normal pancreatic epithelial cells (PDEC), we investigated Shh expression via Immunoblot and real-time, quantitative polymerase chain reaction in addition to Shh release via enzyme-linked immunoassay following cholesterol treatment and/or transfection with either RNA interference to reduce CDON expression or with human CDON to increase expression. Results: Consistent with our Boi model, CDON suppresses Shh release, which is alleviated in response to dietary cholesterol. However, over-expressing CDON suppresses cholesterol-mediated Shh release in some PDAC contexts, which may be relative to the mutational burden of the cells. Conclusion: Identifying mechanisms that either sequester or stimulate Shh release from the tumor cell membrane may provide new avenues to reduce signaling between the tumor and its surrounding environment, which may restrain tumor development.

12.
Cancer Res ; 81(16): 4319-4331, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34145035

RESUMO

Basal-like breast cancers (BLBC) are characterized by defects in homologous recombination (HR), deficient mitotic checkpoint, and high-proliferation activity. Here, we discover CIP2A as a candidate driver of BLBC. CIP2A was essential for DNA damage-induced initiation of mouse BLBC-like mammary tumors and for survival of HR-defective BLBC cells. CIP2A was dispensable for normal mammary gland development and for unperturbed mitosis, but selectively essential for mitotic progression of DNA damaged cells. A direct interaction between CIP2A and a DNA repair scaffold protein TopBP1 was identified, and CIP2A inhibition resulted in enhanced DNA damage-induced TopBP1 and RAD51 recruitment to chromatin in mammary epithelial cells. In addition to its role in tumor initiation, and survival of BRCA-deficient cells, CIP2A also drove proliferative MYC and E2F1 signaling in basal-like triple-negative breast cancer (BL-TNBC) cells. Clinically, high CIP2A expression was associated with poor patient prognosis in BL-TNBCs but not in other breast cancer subtypes. Small-molecule reactivators of PP2A (SMAP) inhibited CIP2A transcription, phenocopied the CIP2A-deficient DNA damage response (DDR), and inhibited growth of patient-derived BLBC xenograft. In summary, these results demonstrate that CIP2A directly interacts with TopBP1 and coordinates DNA damage-induced mitotic checkpoint and proliferation, thereby driving BLBC initiation and progression. SMAPs could serve as a surrogate therapeutic strategy to inhibit the oncogenic activity of CIP2A in BLBCs. SIGNIFICANCE: These results identify CIP2A as a nongenetic driver and therapeutic target in basal-like breast cancer that regulates DNA damage-induced G2-M checkpoint and proliferative signaling.


Assuntos
Autoantígenos/metabolismo , Neoplasias da Mama/metabolismo , Carcinogênese , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitose , Mutação , Proteoma , Recombinação Genética , Transdução de Sinais
13.
Sci Signal ; 13(619)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071169

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecological cancer with few effective, targeted therapies. HGSOC tumors exhibit genomic instability with frequent alterations in the protein kinome; however, only a small fraction of the kinome has been therapeutically targeted in HGSOC. Using multiplexed inhibitor beads and mass spectrometry, we mapped the kinome landscape of HGSOC tumors from patients and patient-derived xenograft models. The data revealed a prevalent signature consisting of established HGSOC driver kinases, as well as several kinases previously unexplored in HGSOC. Loss-of-function analysis of these kinases in HGSOC cells indicated MRCKA (also known as CDC42BPA) as a putative therapeutic target. Characterization of the effects of MRCKA knockdown in established HGSOC cell lines demonstrated that MRCKA was integral to signaling that regulated the cell cycle checkpoint, focal adhesion, and actin remodeling, as well as cell migration, proliferation, and survival. Moreover, inhibition of MRCKA using the small-molecule BDP9066 decreased cell proliferation and spheroid formation and induced apoptosis in HGSOC cells, suggesting that MRCKA may be a promising therapeutic target for the treatment of HGSOC.


Assuntos
Biomarcadores Tumorais/antagonistas & inibidores , Cistadenocarcinoma Seroso/tratamento farmacológico , Miotonina Proteína Quinase/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Proteômica/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Espectrometria de Massas/métodos , Terapia de Alvo Molecular/métodos , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Gradação de Tumores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
14.
Cancer Res ; 67(6): 2408-13, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17363557

RESUMO

The mammalian target of rapamycin (mTOR) is thought to play a critical role in regulating cell growth, cell cycle progression, and tumorigenesis. Because the AKT-mTOR pathway is frequently hyperactivated in ovarian cancer, we hypothesized that the mTOR inhibitor RAD001 (Everolimus) would inhibit ovarian tumorigenesis in transgenic mice that spontaneously develop ovarian carcinomas. We used TgMISIIR-TAg transgenic mice, which develop bilateral ovarian serous adenocarcinomas accompanied by ascites and peritoneal dissemination. Fifty-eight female TgMISIIR-TAg mice were treated with 5 mg/kg RAD001 or placebo twice weekly from 5 to 20 weeks of age. To monitor tumor development, mice were examined biweekly using magnetic resonance microimaging. In vivo effects of RAD001 on Akt-mTOR signaling, tumor cell proliferation, and blood vessel area were analyzed by immunohistochemistry and Western blot analysis. RAD001 treatment markedly delayed tumor development. Tumor burden was reduced by approximately 84%. In addition, ascites formation, together with peritoneal dissemination, was detected in only 21% of RAD001-treated mice compared with 74% in placebo-treated animals. Approximately 30% of RAD001-treated mice developed early ovarian carcinoma confined within the ovary, whereas all placebo-treated mice developed advanced ovarian carcinoma. Treatment with RAD001 diminished the expression of vascular endothelial growth factor in tumor-derived cell lines and inhibited angiogenesis in vivo. RAD001 also attenuated the expression of matrix metalloproteinase-2 and inhibited the invasiveness of tumor-derived cells. Taken together, these preclinical findings suggest that mTOR inhibition, alone or in combination with other molecularly targeted drugs, could represent a promising chemopreventive strategy in women at high familial risk of ovarian cancer.


Assuntos
Neoplasias Ovarianas/tratamento farmacológico , Sirolimo/análogos & derivados , Animais , Modelos Animais de Doenças , Progressão da Doença , Everolimo , Feminino , Metaloproteinase 2 da Matriz/biossíntese , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Fator A de Crescimento do Endotélio Vascular/biossíntese
15.
Cancer Biol Ther ; 20(7): 1035-1045, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30929564

RESUMO

Pharmacological inhibition of PARP is a promising approach in treating high grade serous ovarian carcinoma (HGSOC). PARP inhibitors (PARPi) are most active in patients with defects in DNA damage repair (DDR) mechanisms, such as alterations in expression/function of DNA repair and homologous recombination (HR) genes/proteins, including BRCA1 and BRCA2. Benefit of PARPi could be extended towards HR-proficient patients by combining PARPi with agents that functionally abrogate HR. An attractive molecular target for this purpose is heat shock protein 90 (HSP90), which mediates the maturation and stability of several key proteins required for DDR. Here, we tested the hypothesis that targeted inhibition of HSP90 with a small-molecule inhibitor ganetespib would sensitize non-BRCA mutant ovarian carcinoma (OC) cells to PARP inhibition by talazoparib. We used commercially available cell lines, along with several novel HGSOC OC cell lines established in our laboratory. Ganetespib treatment destabilized HSP90 client proteins involved in DNA damage response and cell cycle checkpoint, and disrupted γ-irradiation-induced DNA repair. The effects of the combination of ganetespib and talazoparib on OC cell viability and survival were also analyzed, and among the non-BRCA mutant cell lines analyzed, the combination was synergistic in several cell lines (OVCAR-3, OC-1, OC-16). Together, our data suggest that ganetespib-mediated inhibition of HSP90 effectively disrupts critical DDR pathway proteins and may sensitize OC cells without 'BRCAness' to PARPi. From a clinical perspective, this suggests that HSP90 inhibition has the potential to sensitize some HGSOC patients without HR pathway alterations to PARPi, and potentially other DNA-damage inducing agents.


Assuntos
Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Proteínas de Choque Térmico HSP90/genética , Recombinação Homóloga , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Radiação Ionizante , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Comp Med ; 69(1): 16-21, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30591091

RESUMO

Transgenic TgMISIIR-TAg (TAg) mice express the oncogenic virus SV40 in Mullerian epithelial cells. Female TAg mice spontaneously develop epithelial ovarian carcinoma, the most common type of ovarian cancer in women. Female TAg mice are infertile, but the reason has not been determined. We therefore investigated whether female TAg mice undergo puberty, demonstrate follicular development, maintain regular cycles, and ovulate. Ovarian cancers in women commonly develop after menopause. The occupational chemical 4-vinylcyclohexene diepoxide (VCD) accelerates follicle degeneration in the ovaries of rats and mice, causing early ovarian failure. We therefore used VCD dosing of mice to develop an animal model for menopause. The purpose of this study was to characterize reproductive parameters in female TAg mice and to investigate whether the onset of ovarian failure due VCD dosing differed between female TAg and WT C57BL/6 mice. As in WT female mice, TAg female mice underwent puberty (vaginal opening) and developed cyclicity in patterns that were similar between the groups. Vehicle-only TAg mice had fewer ovulations (numbers of corpora lutea) than WT animals. VCD exposure delayed the onset of puberty (day of first estrus) in TAg as compared with WT mice. Morphologic evaluation of ovaries revealed many more degenerating follicles in TAg mice than WT mice, and more VCD-dosed TAg mice were in ovarian failure than VCD-dosed WT mice. These results suggest that despite showing similar onset of sexual maturation, TAg mice have increased follicular degeneration and fewer ovulations than WT. These features may contribute to the inability of female TAg mice to reproduce.


Assuntos
Variantes Farmacogenômicos , Reprodução/efeitos dos fármacos , Reprodução/genética , Animais , Cicloexenos/toxicidade , Estro/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Folículo Ovariano/efeitos dos fármacos , Compostos de Vinila/toxicidade
17.
J Biomed Opt ; 24(9): 1-16, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31571434

RESUMO

Ovarian cancer is the deadliest gynecologic cancer due predominantly to late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Multiphoton microscopy (MPM) is a relatively new imaging technique sensitive to endogenous fluorophores, which has tremendous potential for clinical diagnosis, though it is limited in its application to the ovaries. Wide-field fluorescence imaging (WFI) has been proposed as a complementary technique to MPM, as it offers high-resolution imagery of the entire organ and can be tailored to target specific biomarkers that are not captured by MPM imaging. We applied texture analysis to MPM images of a mouse model of ovarian cancer. We also conducted WFI targeting the folate receptor and matrix metalloproteinases. We find that texture analysis of MPM images of the ovary can differentiate between genotypes, which is a proxy for disease, with high statistical significance (p < 0.001). The wide-field fluorescence signal also changes significantly between genotypes (p < 0.01). We use the features to classify multiple tissue groups to over 80% accuracy. These results suggest that MPM and WFI are promising techniques for the early detection of ovarian cancer.


Assuntos
Detecção Precoce de Câncer/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Imagem Óptica/métodos , Neoplasias Ovarianas/diagnóstico por imagem , Algoritmos , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Ovário/diagnóstico por imagem
18.
PLoS One ; 14(10): e0222392, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31581233

RESUMO

We have previously demonstrated that loss of the tumor suppressive activity of ribosomal protein (RP) RPL22 predisposes to development of leukemia in mouse models and aggressive disease in human patients; however, the role of RPL22 in solid tumors, specifically colorectal cancer (CRC), had not been explored. We report here that RPL22 is either deleted or mutated in 36% of CRC and provide new insights into its mechanism of action. Indeed, Rpl22 inactivation causes the induction of its highly homologous paralog, RPL22L1, which serves as a driver of cell proliferation and anchorage-independent growth in CRC cells. Moreover, RPL22L1 protein is highly expressed in patient CRC samples and correlates with poor survival. Interestingly, the association of high RPL22L1 expression with poor prognosis appears to be linked to resistance to 5-Fluorouracil, which is a core component of most CRC therapeutic regimens. Indeed, in an avatar trial, we found that human CRC samples that were unresponsive to 5-Fluorouracil in patient-derived xenografts exhibited elevated expression levels of RPL22L1. This link between RPL22L1 induction and 5-Fluorouracil resistance appears to be causal, because ectopic expression or knockdown of RPL22L1 in cell lines increases and decreases 5-Fluorouracil resistance, respectively, and this is associated with changes in expression of the DNA-repair genes, MGMT and MLH1. In summary, our data suggest that RPL22L1 might be a prognostic marker in CRC and predict 5-FU responsiveness.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/uso terapêutico , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Animais , Proliferação de Células , Neoplasias Colorretais/patologia , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Humanos , Camundongos , Proteína 1 Homóloga a MutL/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo
19.
Oncogene ; 38(36): 6323-6337, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31308489

RESUMO

Ovarian cancer is the fifth-leading cause of cancer death among women. The dissemination of ovarian tumors and growth as spheroids accompanies late-stage disease. In cell culture, ovarian tumor cell spheroids can exhibit elevated resistance to environmental stressors, such as reactive oxygen species. Homeostatic balance of the antioxidant response is a protective mechanism that prevents anoikis, a form of programmed cell death. Signaling pathways activated by integrin receptors suppress anoikis. Rgnef (ARHGEF28/p190RhoGEF) is a guanine nucleotide exchange factor that is activated downstream of integrins. We find that Rgnef protein levels are elevated in late-stage serous ovarian cancer, high Rgnef mRNA levels are associated with decreased progression-free and overall survival, and genomic ARHGEF28 loss is associated with increased patient survival. Using transgenic and transplantable Rgnef knockout mouse models, we find that Rgnef is essential for supporting three-dimensional ovarian spheroid formation in vitro and tumor growth in mice. Using RNA-sequencing and bioinformatic analyses, we identify a conserved Rgnef-supported anti-oxidant gene signature including Gpx4, Nqo1, and Gsta4; common targets of the NF-kB transcription factor. Antioxidant treatment enhanced growth of Rgnef-knockout spheroids and Rgnef re-expression facilitated NF-κB-dependent tumorsphere survival. These studies reveal a new role for Rgnef in ovarian cancer to facilitate NF-κB-mediated gene expression protecting cells from oxidative stress.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/fisiologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Estresse Oxidativo/genética , ras-GRF1/fisiologia , Animais , Proliferação de Células/genética , Citoproteção/genética , Progressão da Doença , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/genética , Células Tumorais Cultivadas , ras-GRF1/genética
20.
Elife ; 82019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31478830

RESUMO

Gene copy number alterations, tumor cell stemness, and the development of platinum chemotherapy resistance contribute to high-grade serous ovarian cancer (HGSOC) recurrence. Stem phenotypes involving Wnt-ß-catenin, aldehyde dehydrogenase activities, intrinsic platinum resistance, and tumorsphere formation are here associated with spontaneous gains in Kras, Myc and FAK (KMF) genes in a new aggressive murine model of ovarian cancer. Adhesion-independent FAK signaling sustained KMF and human tumorsphere proliferation as well as resistance to cisplatin cytotoxicity. Platinum-resistant tumorspheres can acquire a dependence on FAK for growth. Accordingly, increased FAK tyrosine phosphorylation was observed within HGSOC patient tumors surviving neo-adjuvant chemotherapy. Combining a FAK inhibitor with platinum overcame chemoresistance and triggered cell apoptosis. FAK transcriptomic analyses across knockout and reconstituted cells identified 135 targets, elevated in HGSOC, that were regulated by FAK activity and ß-catenin including Myc, pluripotency and DNA repair genes. These studies reveal an oncogenic FAK signaling role supporting chemoresistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Quinase 1 de Adesão Focal/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Platina/farmacologia , Animais , Cisplatino/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa