Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 141(20): 2417-2429, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36749920

RESUMO

Immune thrombocytopenia (ITP) is traditionally considered an antibody-mediated disease. However, a number of features suggest alternative mechanisms of platelet destruction. In this study, we use a multidimensional approach to explore the role of cytotoxic CD8+ T cells in ITP. We characterized patients with ITP and compared them with age-matched controls using immunophenotyping, next-generation sequencing of T-cell receptor (TCR) genes, single-cell RNA sequencing, and functional T-cell and platelet assays. We found that adults with chronic ITP have increased polyfunctional, terminally differentiated effector memory CD8+ T cells (CD45RA+CD62L-) expressing intracellular interferon gamma, tumor necrosis factor α, and granzyme B, defining them as TEMRA cells. These TEMRA cells expand when the platelet count falls and show no evidence of physiological exhaustion. Deep sequencing of the TCR showed expanded T-cell clones in patients with ITP. T-cell clones persisted over many years, were more prominent in patients with refractory disease, and expanded when the platelet count was low. Combined single-cell RNA and TCR sequencing of CD8+ T cells confirmed that the expanded clones are TEMRA cells. Using in vitro model systems, we show that CD8+ T cells from patients with ITP form aggregates with autologous platelets, release interferon gamma, and trigger platelet activation and apoptosis via the TCR-mediated release of cytotoxic granules. These findings of clonally expanded CD8+ T cells causing platelet activation and apoptosis provide an antibody-independent mechanism of platelet destruction, indicating that targeting specific T-cell clones could be a novel therapeutic approach for patients with refractory ITP.


Assuntos
Púrpura Trombocitopênica Idiopática , Adulto , Humanos , Interferon gama , Linfócitos T CD8-Positivos , Células Clonais/patologia , Receptores de Antígenos de Linfócitos T
2.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674781

RESUMO

Platelets are essential for the formation of a haemostatic plug to prevent bleeding, while neutrophils are the guardians of our immune defences against invading pathogens. The interplay between platelets and innate immunity, and subsequent triggering of the activation of coagulation is part of the host system to prevent systemic spread of pathogen in the blood stream. Aberrant immunothrombosis and excessive inflammation can however, contribute to the thrombotic burden observed in many cardiovascular diseases. In this review, we highlight how platelets and neutrophils interact with each other and how their crosstalk is central to both arterial and venous thrombosis and in COVID-19. While targeting platelets and coagulation enables efficient antithrombotic treatments, they are often accompanied with a bleeding risk. We also discuss how novel approaches to reduce platelet-mediated recruitment of neutrophils could represent promising therapies to treat thrombosis without affecting haemostasis.


Assuntos
COVID-19 , Armadilhas Extracelulares , Trombose , Humanos , Neutrófilos , Plaquetas
3.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203577

RESUMO

Long COVID, also known as post-acute sequelae of SARS-CoV-2 infection (PASC), has emerged as a significant health concern following the COVID-19 pandemic. Molecular mechanisms underlying the occurrence and progression of long COVID include viral persistence, immune dysregulation, endothelial dysfunction, and neurological involvement, and highlight the need for further research to develop targeted therapies for this condition. While a clearer picture of the clinical symptomatology is shaping, many molecular mechanisms are yet to be unraveled, given their complexity and high level of interaction with other metabolic pathways. This review summarizes some of the most important symptoms and associated molecular mechanisms that occur in long COVID, as well as the most relevant molecular techniques that can be used in understanding the viral pathogen, its affinity towards the host, and the possible outcomes of host-pathogen interaction.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , Pandemias , SARS-CoV-2 , Progressão da Doença
4.
Haematologica ; 107(4): 933-946, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34134470

RESUMO

The GPIbT-VWF A1 domain interaction is essential for platelet tethering under high shear. Synergy between GPIbα and GPVI signaling machineries has been suggested previously, however its molecular mechanism remains unclear. We generated a novel GPIbα transgenic mouse (GpIbαΔsig/Δsig) by CRISPR-Cas9 technology to delete the last 24 residues of the GPIbα intracellular tail that harbors the 14-3-3 and phosphoinositide-3 kinase binding sites. GPIbαΔsig/Δsig platelets bound VWF normally under flow. However, they formed fewer filopodia on VWF/botrocetin in the presence of a oIIbI3 blocker, demonstrating that despite normal ligand binding, VWF-dependent signaling is diminished. Activation of GpIbαΔsig/Δsig platelets with ADP and thrombin was normal, but GpIbαΔsig/Δsig platelets stimulated with collagen-related-peptide (CRP) exhibited markedly decreased P-selectin exposure and eIIbI3 activation, suggesting a role for the GpIbaaintracellular tail in GPVI-mediated signaling. Consistent with this, while haemostasis was normal in GPIbαΔsig/Δsig mice, diminished tyrosine-phosphorylation, (particularly pSYK) was detected in CRP-stimulated GpIbαΔsig/Δsig platelets as well as reduced platelet spreading on CRP. Platelet responses to rhodocytin were also affected in GpIbαΔsig/Δsig platelets but to a lesser extent than those with CRP. GpIbαΔsig/Δsig platelets formed smaller aggregates than wild-type platelets on collagen-coated microchannels at low, medium and high shear. In response to both VWF and collagen binding, flow assays performed with plasma-free blood or in the presence of bIIbI3- or GPVI-blockers suggested reduced bIIbI3 activation contributes to the phenotype of the GpIbαΔsig/Δsig platelets. Together, these results reveal a new role for the intracellular tail of GPIbiiin transducing both VWF-GPIbGGand collagen-GPVI signaling events in platelets.


Assuntos
Plaquetas , Fator de von Willebrand , Animais , Plaquetas/metabolismo , Colágeno/metabolismo , Hemostasia , Humanos , Camundongos , Transdução de Sinais , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
6.
Front Immunol ; 15: 1344086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500880

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has been defined as the greatest global health and socioeconomic crisis of modern times. While most people recover after being infected with the virus, a significant proportion of them continue to experience health issues weeks, months and even years after acute infection with SARS-CoV-2. This persistence of clinical symptoms in infected individuals for at least three months after the onset of the disease or the emergence of new symptoms lasting more than two months, without any other explanation and alternative diagnosis have been named long COVID, long-haul COVID, post-COVID-19 conditions, chronic COVID, or post-acute sequelae of SARS-CoV-2 (PASC). Long COVID has been characterized as a constellation of symptoms and disorders that vary widely in their manifestations. Further, the mechanisms underlying long COVID are not fully understood, which hamper efficient treatment options. This review describes predictors and the most common symptoms related to long COVID's effects on the central and peripheral nervous system and other organs and tissues. Furthermore, the transcriptional markers, molecular signaling pathways and risk factors for long COVID, such as sex, age, pre-existing condition, hospitalization during acute phase of COVID-19, vaccination, and lifestyle are presented. Finally, recommendations for patient rehabilitation and disease management, as well as alternative therapeutical approaches to long COVID sequelae are discussed. Understanding the complexity of this disease, its symptoms across multiple organ systems and overlapping pathologies and its possible mechanisms are paramount in developing diagnostic tools and treatments.


Assuntos
COVID-19 , Humanos , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Gerenciamento Clínico , Progressão da Doença
7.
J Thromb Haemost ; 21(1): 94-100, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695401

RESUMO

BACKGROUND: Post-COVID syndrome (PCS) affects millions of people worldwide, causing a multitude of symptoms and impairing quality of life months or even years after acute COVID-19. A prothrombotic state has been suggested; however, underlying mechanisms remain to be elucidated. OBJECTIVES: To investigate thrombogenicity in PCS using a microfluidic assay, linking microthrombi, thrombin generation, and the von Willebrand factor (VWF):a Disintegrin and Metalloproteinase with a Thrombospondin Type 1 motif, member 13 (ADAMTS13) axis. METHODS: Citrated blood was perfused through microfluidic channels coated with collagen or an antibody against the VWF A3 domain, and thrombogenicity was monitored in real time. Thrombin generation assays were performed and α(2)-antiplasmin, VWF, and ADAMTS13 activity levels were also measured. RESULTS: We investigated thrombogenicity in a cohort of 21 patients with PCS with a median time following symptoms onset of 23 months using a dynamic microfluidic assay. Our data show a significant increase in platelet binding on both collagen and anti-VWF A3 in patients with PCS compared with that in controls, which positively correlated with VWF antigen (Ag) levels, the VWF(Ag):ADAMTS13 ratio (on anti-VWF A3), and inversely correlated with ADAMTS13 activity (on collagen). Thrombi forming on collagen presented different geometries in patients with PCS vs controls, with significantly increased thrombi area mainly attributable to thrombi length in the patient group. Thrombi length positively correlated with VWF(Ag):ADAMTS13 ratio and thrombin generation assay results, which were increased in 55.5% of patients. α(2)-Antiplasmin levels were normal in 89.5% of patients. CONCLUSION: Together, these data present a dynamic assay to investigate the prothrombotic state in PCS, which may help unravel the mechanisms involved and/or establish new therapeutic strategies for this condition.


Assuntos
Antifibrinolíticos , COVID-19 , Trombose , Humanos , Trombina , Qualidade de Vida , Proteínas ADAM/metabolismo , COVID-19/complicações , Fator de von Willebrand/metabolismo , Trombose/etiologia , Colágeno , Proteína ADAMTS13
8.
Elife ; 92020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32314961

RESUMO

Platelet-neutrophil interactions are important for innate immunity, but also contribute to the pathogenesis of deep vein thrombosis, myocardial infarction and stroke. Here we report that, under flow, von Willebrand factor/glycoprotein Ibα-dependent platelet 'priming' induces integrin αIIbß3 activation that, in turn, mediates neutrophil and T-cell binding. Binding of platelet αIIbß3 to SLC44A2 on neutrophils leads to mechanosensitive-dependent production of highly prothrombotic neutrophil extracellular traps. A polymorphism in SLC44A2 (rs2288904-A) present in 22% of the population causes an R154Q substitution in an extracellular loop of SLC44A2 that is protective against venous thrombosis results in severely impaired binding to both activated αIIbß3 and VWF-primed platelets. This was confirmed using neutrophils homozygous for the SLC44A2 R154Q polymorphism. Taken together, these data reveal a previously unreported mode of platelet-neutrophil crosstalk, mechanosensitive NET production, and provide mechanistic insight into the protective effect of the SLC44A2 rs2288904-A polymorphism in venous thrombosis.


Platelets in our blood form clots over sites of injury to stop us from bleeding. Blood clots can also occur in places where they are not needed, such as deep veins in our legs or other regions of the body. Developing such clots ­ also known as deep vein thrombosis (or DVT for short) ­ is one of the most common cardiovascular diseases and a major cause of death. Although certain inherited factors have been linked to DVT, the underlying mechanisms of the disease remain poorly understood. In addition to platelets, the pathological (or dangerous) clots that cause DVT also contain immune cells called neutrophils which fight off bacterial infections. Platelets are recruited to the wall of the vein by a protein called "von Willebrand Factor" (or VWF for short). However, it remained unclear how these recruited platelets interact with neutrophils and whether this promotes the onset of DVT. To answer this question, Constantinescu-Bercu et al. used a device that mimics the flow of blood to study how human platelets change when they are exposed to VWF. This revealed that VWF 'primes' the platelets to interact with neutrophils via a protein called integrin αIIbß3. Further experiments showed that integrin αIIbß3 binds to a protein on the surface of neutrophils called SLC44A2. Once the neutrophils interacted with the 'primed' platelets, they started making traps which increased the size of the blood clot by capturing other blood cells and proteins. Finally, Constantinescu-Bercu et al. studied a genetic variant of the SLC44A2 protein which is found in 22% of people and is associated with a lower risk of developing DVT. This genetic mutation caused SLC44A2 to interact with 'primed' platelets more weakly, which may explain why people with this genetic variant are protected from getting DVT. These findings suggest that blocking the interaction between 'primed' platelets and neutrophils could reduce the risk of DVT. Although current treatments for DVT can prevent patients from forming dangerous blood clots, they can also cause severe bleeding. Since neutrophils are not crucial for normal blood clots to form at the site of injury, drugs targeting SLC44A2 could inhibit inappropriate clotting without causing excess bleeding.


Assuntos
Armadilhas Extracelulares/fisiologia , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Neutrófilos/metabolismo , Ativação Plaquetária/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombose Venosa , Plaquetas/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Polimorfismo Genético , Trombose Venosa/genética , Trombose Venosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa