Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 64, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773649

RESUMO

Zoonotic diseases represent a significant societal challenge in terms of their health and economic impacts. One Health approaches to managing zoonotic diseases are becoming more prevalent, but require novel thinking, tools and cross-disciplinary collaboration. Bovine tuberculosis (bTB) is one example of a costly One Health challenge with a complex epidemiology involving humans, domestic animals, wildlife and environmental factors, which require sophisticated collaborative approaches. We undertook a scoping review of multi-host bTB epidemiology to identify trends in species publication focus, methodologies, and One Health approaches. We aimed to identify knowledge gaps where novel research could provide insights to inform control policy, for bTB and other zoonoses. The review included 532 articles. We found different levels of research attention across episystems, with a significant proportion of the literature focusing on the badger-cattle-TB episystem, with far less attention given to tropical multi-host episystems. We found a limited number of studies focusing on management solutions and their efficacy, with very few studies looking at modelling exit strategies. Only a small number of studies looked at the effect of human disturbances on the spread of bTB involving wildlife hosts. Most of the studies we reviewed focused on the effect of badger vaccination and culling on bTB dynamics with few looking at how roads, human perturbations and habitat change may affect wildlife movement and disease spread. Finally, we observed a lack of studies considering the effect of weather variables on bTB spread, which is particularly relevant when studying zoonoses under climate change scenarios. Significant technological and methodological advances have been applied to bTB episystems, providing explicit insights into its spread and maintenance across populations. We identified a prominent bias towards certain species and locations. Generating more high-quality empirical data on wildlife host distribution and abundance, high-resolution individual behaviours and greater use of mathematical models and simulations are key areas for future research. Integrating data sources across disciplines, and a "virtuous cycle" of well-designed empirical data collection linked with mathematical and simulation modelling could provide additional gains for policy-makers and managers, enabling optimised bTB management with broader insights for other zoonoses.


Assuntos
Tuberculose Bovina , Zoonoses , Animais , Tuberculose Bovina/prevenção & controle , Tuberculose Bovina/epidemiologia , Bovinos , Zoonoses/prevenção & controle , Humanos , Animais Selvagens , Saúde Única , Mustelidae/fisiologia
2.
R Soc Open Sci ; 11(3): 231470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511083

RESUMO

Human activities can induce significant behavioural changes in wildlife. Often explored through extractive interactions (e.g. hunting) that can favour certain behavioural traits, the implications of non-extractive ones, such as wildlife feeding, remain understudied. Research shows that people tend to favour bolder individuals within populations despite their dynamics and consequences being unclear. Using fallow deer in a peri-urban environment, we studied whether mothers that show reduced fear of humans and consistently approach them for food adopt weaker anti-predator strategies by selecting less concealed fawning bedsites closer to human hotspots. This would provide the advantage of additional feeding opportunities in comparison with shyer mothers while keeping their fawns close. Our dataset encompassed 281 capture events of 172 fawns from 110 mothers across 4 years. Surprisingly, mothers that regularly accepted food from humans selected more concealed bedsites farther from human hotspots, giving their offspring better protection while also benefitting from additional food during lactation. Our results show behavioural adaptations by a subset of females and, for the first time, link the tendency to approach humans and strategies to protect offspring. Given previous findings that these begging females also deliver heavier fawns at birth, our research further investigates human-wildlife feeding interactions and their behavioural implications.

3.
Mov Ecol ; 12(1): 55, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107862

RESUMO

BACKGROUND: Social network analysis of animal societies allows scientists to test hypotheses about social evolution, behaviour, and dynamic processes. However, the accuracy of estimated metrics depends on data characteristics like sample proportion, sample size, and frequency. A protocol is needed to assess for bias and robustness of social network metrics estimated for the animal populations especially when a limited number of individuals are monitored. METHODS: We used GPS telemetry datasets of five ungulate species to combine known social network approaches with novel ones into a comprehensive five-step protocol. To quantify the bias and uncertainty in the network metrics obtained from a partial population, we presented novel statistical methods which are particularly suited for autocorrelated data, such as telemetry relocations. The protocol was validated using a sixth species, the fallow deer, with a known population size where ∼ 85 % of the individuals have been directly monitored. RESULTS: Through the protocol, we demonstrated how pre-network data permutations allow researchers to assess non-random aspects of interactions within a population. The protocol assesses bias in global network metrics, obtains confidence intervals, and quantifies uncertainty of global and node-level network metrics based on the number of nodes in the network. We found that global network metrics like density remained robust even with a lowered sample size, while local network metrics like eigenvector centrality were unreliable for four of the species. The fallow deer network showed low uncertainty and bias even at lower sampling proportions, indicating the importance of a thoroughly sampled population while demonstrating the accuracy of our evaluation methods for smaller samples. CONCLUSIONS: The protocol allows researchers to analyse GPS-based radio-telemetry or other data to determine the reliability of social network metrics. The estimates enable the statistical comparison of networks under different conditions, such as analysing daily and seasonal changes in the density of a network. The methods can also guide methodological decisions in animal social network research, such as sampling design and allow more accurate ecological inferences from the available data. The R package aniSNA enables researchers to implement this workflow on their dataset, generating reliable inferences and guiding methodological decisions.

4.
Pathogens ; 11(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35890051

RESUMO

Disturbance ecology refers to the study of discrete processes that disrupt the structure or dynamics of an ecosystem. Such processes can, therefore, affect wildlife species ecology, including those that are important pathogen hosts. We report on an observational before-and-after study on the association between forest clearfelling and bovine tuberculosis (bTB) herd risk in cattle herds, an episystem where badgers (Meles meles) are the primary wildlife spillover host. The study design compared herd bTB breakdown risk for a period of 1 year prior to and after exposure to clearfelling across Ireland at sites cut in 2015-2017. The percent of herds positive rose from 3.47% prior to clearfelling to 4.08% after exposure. After controlling for confounders (e.g., herd size, herd type), we found that cattle herds significantly increased their odds of experiencing a bTB breakdown by 1.2-times (95%CIs: 1.07-1.36) up to 1 year after a clearfell risk period. Disturbance ecology of wildlife reservoirs is an understudied area with regards to shared endemic pathogens. Epidemiological observational studies are the first step in building an evidence base to assess the impact of such disturbance events; however, such studies are limited in inferring the mechanism for any changes in risk observed. The current cohort study suggested an association between clearfelling and bTB risk, which we speculate could relate to wildlife disturbance affecting pathogen spillback to cattle, though the study design precludes causal inference. Further studies are required. However, ultimately, integration of epidemiology with wildlife ecology will be important for understanding the underlying mechanisms involved, and to derive suitable effective management proposals, if required.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa