Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Appl Microbiol ; 128: 1-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39059841

RESUMO

In Chile, as in the rest of the world, only a small fraction of the fungal diversity inhabiting the wide variety of its ecosystems is known. This diversity must hide an inestimable richness of species with interesting biotechnological potential, including fungal pigment producers. Recently, interest in filamentous fungi has increased significantly due to their importance as alternative sources of pigments and colorants that are environmentally and human health friendly. As a result, fungal pigments are gaining importance in various industrial applications, such as food, textiles, pharmaceuticals, cosmetics, etc. The increasing consumer demand for "green label" natural colorants requires the exploration of different ecosystems in search of new fungal species that are efficient producers of different pigment with a wide range of colors and ideally without the co-production of mycotoxins. However, advances are also needed in pigment production processes through fermentation, scale-up from laboratory to industrial scale, and final product formulation and marketing. In this respect, the journey is still full of challenges for scientists and entrepreneurs. This chapter describes studies on pigment-producing fungi collected in the forests of central-southern Chile. Aspects such as the exploration of potential candidates as sources of extracellular pigments, the optimization of pigment production by submerged fermentation, methods of pigment extraction and purification for subsequent chemical characterization, and formulation (by microencapsulation) for potential cosmetic applications are highlighted. This potential use is due to the outstanding bioactivity of most fungal pigments, making them interesting functional ingredients for many applications. Finally, the use of fungal pigments for textile and spalting applications is discussed.


Assuntos
Florestas , Fungos , Pigmentos Biológicos , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/química , Chile , Fungos/metabolismo , Fungos/genética , Fungos/classificação , Fermentação
2.
Appl Microbiol Biotechnol ; 106(24): 8021-8034, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36370157

RESUMO

In this work, extracellular colored metabolites obtained from the filamentous fungi Talaromyces australis and Penicillium murcianum, isolated in the Andean-Patagonian native forests of Chile, were studied as prospect compounds to increase the sustainability of cosmetic products. The chemical and antioxidant properties of these natural pigments were characterized and strategies for their microencapsulation were also studied. UHPLC/MS-MS analyses indicated that the predominant metabolites detected in the cultures of P. murcianum were monascin (m/z = 411.15) and monashexenone (m/z = 319.10), while athrorosin H (m/z = 458.20) and damnacanthal (m/z = 281.05) were detected in cultures of T. australis. ORAC tests revealed that P. murcianum's metabolites had the greatest antioxidant properties with values higher than 2000 µmol of trolox equivalents/g. The fungal metabolites were successfully microencapsulated by ionic gelation into structures made of 1.3% sodium alginate, 0.2% chitosan, and 0.07% hyaluronic acid. The microencapsulation process generated structures of 543.57 ± 0.13 µm of mean diameter (d50) with an efficiency of 30% for P. murcianum, and 329.59 ± 0.15 µm of mean diameter (d50) and 40% efficiency, for T. australis. The chemical and biological characterization show the biotechnological potential of these fungal species to obtain pigments with antioxidant activity that could be useful in the cosmetic industry. The encapsulation process enables the production of easy-to-handle dry powder from the fungal metabolites, which could be potentially marketed as a functional cosmetic ingredient. KEY POINTS: • The predominant fungal pigments were of azaphilone and anthraquinoid classes. • The fungal pigments showed high antioxidant activity by ORAC assay. • Fungal pigment microcapsules obtained by ionic gelation were characterized.


Assuntos
Antioxidantes , Biotecnologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa