Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(21): 215004, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26636857

RESUMO

Electron and ion heating characteristics during merging reconnection start-up on the MAST spherical tokamak have been revealed in detail using a 130 channel yttrium aluminum garnet (YAG) and a 300 channel Ruby-Thomson scattering system and a new 32 chord ion Doppler tomography diagnostic. Detailed 2D profile measurements of electron and ion temperature together with electron density have been achieved for the first time and it is found that electron temperature forms a highly localized hot spot at the X point and ion temperature globally increases downstream. For the push merging experiment when the guide field is more than 3 times the reconnecting field, a thick layer of a closed flux surface form by the reconnected field sustains the temperature profile for longer than the electron and ion energy relaxation time ~4-10 ms, both characteristic profiles finally forming a triple peak structure at the X point and downstream. An increase in the toroidal guide field results in a more peaked electron temperature profile at the X point, and also produces higher ion temperatures at this point, but the ion temperature profile in the downstream region is unaffected.

2.
Rev Sci Instrum ; 92(7): 073506, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340444

RESUMO

In this paper, the pixelated phase mask (PPM) method of interferometry is applied to coherence imaging (CI)-a passive, narrowband spectral imaging technique for diagnosing the edge and divertor regions of fusion plasma experiments. Compared to previous CI designs that use a linear phase mask, the PPM method allows for a higher possible spatial resolution. The PPM method is also observed to give a higher instrument contrast (analogous to a more narrow spectrometer instrument function). A single-delay PPM instrument is introduced as well as a multi-delay system that uses a combination of both pixelated and linear phase masks to encode the coherence of the observed radiation at four different interferometer delays simultaneously. The new methods are demonstrated with measurements of electron density ne, via Stark broadening of the Hγ emission line at 434.0 nm, made on the Magnum-PSI linear plasma experiment. A comparison of the Abel-inverted multi-delay CI measurements with Thomson scattering shows agreement across the 3 × 1019 < ne < 1 × 1021 m-3 range. For the single-delay CI results, agreement is found for ne > 1 × 1020 m-3 only. Accurate and independent interpretation of single-delay CI data at lower ne was not possible due to Doppler broadening and continuum emission.

3.
Rev Sci Instrum ; 89(10): 10K107, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399841

RESUMO

Since 2010, an in-vessel calibration light source (ICLS) has been used periodically on JET to calibrate a range of diagnostics at UV, visible, and IR wavelengths. During shutdowns, the ICLS (which is essentially an integrating sphere) is positioned within the vacuum vessel by the remote handling (RH) system. Following the 2013 calibration runs, several changes were made to improve the efficiency and quality of the calibrations. Among these was the replacement of a 20 m "umbilical" cable which carried power and other electrical signals through a vessel port to/from a control cubicle. A lightweight 2 m cable now plugs directly into a single connector on the RH manipulator system, greatly reducing the time required for deployment and improving operational flexibility; e.g., the vessel access "floor" no longer needs to be installed. This change also means the system would be compatible with calibrations after a high neutron-fluence period of operation. An on-board micro-spectrometer now allows for real-time verification of the emitted spectrum. Finally, new "baffles" were designed and installed within the integrating sphere itself, greatly improving the spectral radiance uniformity at non-normal viewing angles (necessary due to orientation uncertainties with the RH system).

4.
Rev Sci Instrum ; 89(10): 10D113, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399852

RESUMO

Charge-exchange spectroscopy on JET has become particularly challenging with the introduction of the ITER-like wall. The line intensities are weaker and contaminated by many nuisance lines. We have therefore upgraded the instrumentation to improve throughput and allow the simultaneous measurement of impurity and fuel-ion charge exchange by splitting the light between two pairs of imaging spectrometers using dichroic beam splitters. Imaging instruments allow us to stack 11 × 1 mm diameter fibres on the entrance slits without cross talk. CCD cameras were chosen to have 512 × 512 pixels to allow frame transfer times <0.2 ms which with minimum exposure times of 5 ms give tolerable smearing even without a chopper. The image plane is optically demagnified 2:1 to match the sensor size of these cameras. Because the image plane of the spectrometer is tilted, the CCD must also be tilted to maintain focus over the spectrum (Scheimpflug condition). To avoid transverse keystoning (causing the vertical height of the spectra to change across the sensor), the configuration is furthermore designed to be telecentric by a suitable choice of the lens separation. The lens configuration is built almost entirely from commercial off-the-shelf components, which allowed it to be assembled and aligned relatively rapidly to meet the deadline for in-vessel calibration in the JET shutdown.

5.
Rev Sci Instrum ; 85(11): 11E432, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430339

RESUMO

The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dß, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

6.
Rev Sci Instrum ; 85(11): 11D701, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430211

RESUMO

The proton detector (PD) measures 3 MeV proton yield distributions from deuterium-deuterium fusion reactions within the Mega Amp Spherical Tokamak (MAST). The PD's compact four-channel system of collimated and individually oriented silicon detectors probes different regions of the plasma, detecting protons (with gyro radii large enough to be unconfined) leaving the plasma on curved trajectories during neutral beam injection. From first PD data obtained during plasma operation in 2013, proton production rates (up to several hundred kHz and 1 ms time resolution) during sawtooth events were compared to the corresponding MAST neutron camera data. Fitted proton emission profiles in the poloidal plane demonstrate the capabilities of this new system.

7.
Rev Sci Instrum ; 85(11): 11E425, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430332

RESUMO

The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

8.
Rev Sci Instrum ; 81(10): 10D738, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033929

RESUMO

A motional Stark effect (MSE) diagnostic is now installed and operating routinely on the MAST spherical tokamak, with 35 radial channels, spatial resolution of ∼2.5 cm, and time resolution of ∼1 ms at angular noise levels of ∼0.5°. Conventional (albeit very narrow) interference filters isolate π or σ polarized emission. Avalanche photodiode detectors with digital phase-sensitive detection measure the harmonics of a pair of photoelastic modulators operating at 20 and 23 kHz, and thus the polarization state. The π component is observed to be significantly stronger than σ, in reasonably good agreement with atomic physics calculations, and as a result, almost all channels are now operated on π. Trials with a wide filter that admits the entire Stark pattern (relying on the net polarization of the emission) have demonstrated performance almost as good as the conventional channels. MSE-constrained equilibrium reconstructions can readily be produced between pulses.

9.
Rev Sci Instrum ; 80(7): 073503, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19655949

RESUMO

Beam emission spectroscopy (BES) of the energetic deuterium (D(0)) heating beams can provide a means of characterizing the density turbulence in tokamak plasmas. First such measurements have been performed on the MAST spherical tokamak using a trial BES system, which shares the collection optics of the charge-exchange recombination spectroscopy system. This system, with eight spatial channels covering the outer part of the plasma cross section, uses avalanche photodiode detectors with custom preamplifiers to provide measurements at 1 MHz bandwidth with a spatial resolution of 4 cm. Simulations of the measurement, including the beam absorption and excitation, line-of-sight integration of the emission spectrum, and the characteristics of the detection system have been benchmarked against the measured absolute intensity of the Doppler shifted Dalpha fluorescence from the 50 keV beam. This gives confidence in predictions of the performance of a two-dimensional imaging BES system planned for MAST. Correlation techniques have also provided information on the characteristics of the density turbulence at the periphery of L-mode plasmas as well as density perturbations due to coherent magnetohydrodynamic activity at the edge of H-mode plasmas. Precursor oscillations of the density in the pedestal region to edge-localized modes occurring during H-mode plasmas with a single-null diverted magnetic configuration are also observable in the raw signals from the trial BES system.

10.
Rev Sci Instrum ; 79(10): 10F524, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044669

RESUMO

A multichord motional Stark effect (MSE) system has recently been built on the MAST tokamak. In MAST the pi and sigma lines of the MSE spectrum overlap due to the low magnetic field typical for present day spherical tokamaks. Also, the field curvature results in a large change in the pitch angle over the observation volume. The measured polarization angle does not relate to one local pitch angle but to an integration over all pitch angles in the observation volume. The velocity distribution of the neutral beam further complicates the measurement. To take into account volume effects and velocity distribution, an ab initio code was written that simulates the MSE spectrum on MAST. The code is modular and can easily be adjusted for other tokamaks. The code returns the intensity, polarized fraction, and polarization angle as a function of wavelength. Results of the code are presented, showing the effect on depolarization and wavelength dependence of the polarization angle. The code is used to optimize the design and calibration of the MSE diagnostic.

11.
Phys Rev Lett ; 88(3): 035002, 2002 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-11801066

RESUMO

H-mode plasmas have been achieved on the MAST spherical tokamak at input power considerably higher than predicted by conventional threshold scalings. Following L- H transition, a clear improvement in energy confinement is obtained, exceeding recent international scalings even at densities approaching the Greenwald density limit. Transition is accompanied by an order-of-magnitude increase in edge-density gradient, a marked decrease in turbulence, the efficient conversion of internal electron Bernstein waves into free space waves, and the onset and saturation of edge poloidal rotation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa