Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 180: 251-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25910020

RESUMO

The morphology of atmospheric pitting corrosion in 304L stainless steel plate was analysed using MgCl(2) droplets in relation to changes in relative humidity (RH) and chloride deposition density (CDD). It was found that highly reproducible morphologies occur that are distinct at different RH. Pitting at higher concentrations, i.e. lower RH, resulted in satellite pits forming around the perimeter of wide shallow dish regions. At higher RH, these satellite pits did not form and instead spiral attack into the shallow region was observed. Increasing CDD at saturation resulted in a very broad-mouthed pitting attack within the shallow dish region. Large data sets were used to find trends in pit size and morphology in what is essentially a heterogeneous alloy. Electrochemical experiments on 304 stainless steel wires in highly saturated solutions showed that the passive current density increased significantly above 3 M MgCl(2) and the breakdown pitting potential dropped as the concentration increased. It is proposed that the shallow dish regions grow via enhanced dissolution of the passive film, whereas satellite pits and a spiral attack take place with active dissolution of bare metal surfaces.

2.
Adv Healthc Mater ; 7(21): e1800338, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30221474

RESUMO

Ti-based bulk metallic glasses are under consideration for implants due to their high yield strength and biocompatibility. In this work, in situ synchrotron X-ray diffraction (XRD) is used to investigate the corrosion products formed from corrosion of Ti40 Zr10 Cu34 Pd14 Sn2 bulk metallic glass in artificial corrosion pits in physiological saline (NaCl). It is found that Pd nanoparticles form in the interior of the pits during electrochemical dissolution. At a low pit growth potential, the change in lattice parameter of the Pd nanoparticles is consistent with the formation of palladium hydride. In addition, a salt layer very close to the dissolving interface is found to contain CuCl, PdCl2 , ZrOCl2 ∙8H2 O, Cu, Cu2 O, and several unidentified phases. The formation of Pd nanoparticles (16 ± 10 nm at 0.7 V vs Ag/AgCl) containing small amounts of the other alloying elements is confirmed by transmission electron microscopy. The addition of albumin and/or H2 O2 does not significantly influence the nature of the corrosion products. When considering the biological compatibility of the alloy, the biological reactivity of the corrosion products identified should be explored.


Assuntos
Materiais Biocompatíveis/química , Titânio/química , Difração de Raios X/métodos , Ligas/química , Corrosão , Eletrólitos , Microscopia Eletrônica de Transmissão , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa