RESUMO
Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies. We generated a transcriptome profile of 1,149,344 single cells from the bone marrow of 263 newly diagnosed patients enrolled in the CoMMpass study and characterized immune and hematopoietic cell populations. Associating cell abundances and gene expression with disease progression revealed the presence of a proinflammatory immune senescence-associated secretory phenotype in rapidly progressing patients. Furthermore, signaling analyses suggested active intercellular communication involving APRIL-BCMA, potentially promoting tumor growth and survival. Finally, we demonstrate that integrating immune cell levels with genetic information can significantly improve patient stratification.
RESUMO
We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian ('marsupial') species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation.
Assuntos
Evolução Molecular , Genoma/genética , Genômica , Gambás/genética , Animais , Composição de Bases , Sequência Conservada/genética , Elementos de DNA Transponíveis/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Biossíntese de Proteínas , Sintenia/genética , Inativação do Cromossomo X/genéticaRESUMO
The purpose of this study was to evaluate the safety and efficacy of buprenorphine compared with placebo in prolonging the duration of analgesia in single-injection peripheral nerve block. The systematic review and meta-analysis were conducted following the PRISMA statement and Review Manager was used for meta-analysis. Outcomes were calculated using the mean difference (MD) with 95% confidence interval (CI) for continuous data. For dichotomous outcomes, effect sizes were estimated by calculating pooled risk ratio (RR) with 95% CI. Statistical heterogeneity was estimated by the I2 statistic. Compared with placebo, buprenorphine prolonged the duration of analgesia by an average of 8 hours (MD, 8.01; 95% CI, 6.79 to 9.24; P < .00001). The cumulative pain scores within 24 hours (MD, -0.8; 95% CI, -1.21 to -0.40; P < .0001) and the 24-hour opioid consumption (MD, -5.56; 95% CI, -10.60 to -0.52; P = .03) after surgery was lower with buprenorphine group. Conversely, buprenorphine increased the incidence of postoperative nausea and vomiting (PONV) (RR, 1.67; 95% CI, 1.16 to 2.39; P = .006). Buprenorphine is effective in prolonging analgesia, decreasing pain scores and opioid consumption, however, it increases the risk of PONV.
Assuntos
Buprenorfina , Humanos , Buprenorfina/uso terapêutico , Buprenorfina/farmacologia , Analgésicos Opioides/uso terapêutico , Náusea e Vômito Pós-Operatórios/tratamento farmacológico , Dor Pós-Operatória/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Nervos PeriféricosRESUMO
Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.
Assuntos
Cromossomos Humanos Par 17/genética , Evolução Molecular , Animais , Composição de Bases , Duplicação Gênica , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos , Análise de Sequência de DNA , Elementos Nucleotídeos Curtos e Dispersos/genética , Sintenia/genéticaRESUMO
The International Human Genome Sequencing Consortium (IHGSC) recently completed a sequence of the human genome. As part of this project, we have focused on chromosome 8. Although some chromosomes exhibit extreme characteristics in terms of length, gene content, repeat content and fraction segmentally duplicated, chromosome 8 is distinctly typical in character, being very close to the genome median in each of these aspects. This work describes a finished sequence and gene catalogue for the chromosome, which represents just over 5% of the euchromatic human genome. A unique feature of the chromosome is a vast region of approximately 15 megabases on distal 8p that appears to have a strikingly high mutation rate, which has accelerated in the hominids relative to other sequenced mammals. This fast-evolving region contains a number of genes related to innate immunity and the nervous system, including loci that appear to be under positive selection--these include the major defensin (DEF) gene cluster and MCPH1, a gene that may have contributed to the evolution of expanded brain size in the great apes. The data from chromosome 8 should allow a better understanding of both normal and disease biology and genome evolution.
Assuntos
Cromossomos Humanos Par 8/genética , Evolução Molecular , Animais , Mapeamento de Sequências Contíguas , DNA Satélite/genética , Defensinas/genética , Eucromatina/genética , Feminino , Humanos , Imunidade Inata/genética , Masculino , Dados de Sequência Molecular , Família Multigênica/genética , Análise de Sequência de DNARESUMO
Here we present a finished sequence of human chromosome 15, together with a high-quality gene catalogue. As chromosome 15 is one of seven human chromosomes with a high rate of segmental duplication, we have carried out a detailed analysis of the duplication structure of the chromosome. Segmental duplications in chromosome 15 are largely clustered in two regions, on proximal and distal 15q; the proximal region is notable because recombination among the segmental duplications can result in deletions causing Prader-Willi and Angelman syndromes. Sequence analysis shows that the proximal and distal regions of 15q share extensive ancient similarity. Using a simple approach, we have been able to reconstruct many of the events by which the current duplication structure arose. We find that most of the intrachromosomal duplications seem to share a common ancestry. Finally, we demonstrate that some remaining gaps in the genome sequence are probably due to structural polymorphisms between haplotypes; this may explain a significant fraction of the gaps remaining in the human genome.
Assuntos
Cromossomos Humanos Par 15/genética , Evolução Molecular , Duplicação Gênica , Animais , Sequência Conservada/genética , Genes , Genoma Humano , Haplótipos/genética , Humanos , Macaca mulatta/genética , Dados de Sequência Molecular , Família Multigênica/genética , Filogenia , Polimorfismo Genético/genética , Análise de Sequência de DNA , Sintenia/genéticaRESUMO
Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.
Assuntos
Cães/genética , Evolução Molecular , Genoma/genética , Genômica , Haplótipos/genética , Animais , Sequência Conservada/genética , Doenças do Cão/genética , Cães/classificação , Feminino , Humanos , Hibridização Genética , Masculino , Camundongos , Mutagênese/genética , Polimorfismo de Nucleotídeo Único/genética , Ratos , Elementos Nucleotídeos Curtos e Dispersos/genética , Sintenia/genéticaRESUMO
Chromosome 18 appears to have the lowest gene density of any human chromosome and is one of only three chromosomes for which trisomic individuals survive to term. There are also a number of genetic disorders stemming from chromosome 18 trisomy and aneuploidy. Here we report the finished sequence and gene annotation of human chromosome 18, which will allow a better understanding of the normal and disease biology of this chromosome. Despite the low density of protein-coding genes on chromosome 18, we find that the proportion of non-protein-coding sequences evolutionarily conserved among mammals is close to the genome-wide average. Extending this analysis to the entire human genome, we find that the density of conserved non-protein-coding sequences is largely uncorrelated with gene density. This has important implications for the nature and roles of non-protein-coding sequence elements.
Assuntos
Cromossomos Humanos Par 18/genética , DNA/genética , Aneuploidia , Animais , Sequência Conservada/genética , Ilhas de CpG/genética , Éxons/genética , Etiquetas de Sequências Expressas , Genes/genética , Genoma Humano , Humanos , Íntrons/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , SinteniaRESUMO
Malignant rhabdoid tumors (MRT) are highly aggressive pediatric cancers that respond poorly to current therapies. In this study, we screened several MRT cell lines with large-scale RNAi, CRISPR-Cas9, and small-molecule libraries to identify potential drug targets specific for these cancers. We discovered MDM2 and MDM4, the canonical negative regulators of p53, as significant vulnerabilities. Using two compounds currently in clinical development, idasanutlin (MDM2-specific) and ATSP-7041 (MDM2/4-dual), we show that MRT cells were more sensitive than other p53 wild-type cancer cell lines to inhibition of MDM2 alone as well as dual inhibition of MDM2/4. These compounds caused significant upregulation of the p53 pathway in MRT cells, and sensitivity was ablated by CRISPR-Cas9-mediated inactivation of TP53. We show that loss of SMARCB1, a subunit of the SWI/SNF (BAF) complex mutated in nearly all MRTs, sensitized cells to MDM2 and MDM2/4 inhibition by enhancing p53-mediated apoptosis. Both MDM2 and MDM2/4 inhibition slowed MRT xenograft growth in vivo, with a 5-day idasanutlin pulse causing marked regression of all xenografts, including durable complete responses in 50% of mice. Together, these studies identify a genetic connection between mutations in the SWI/SNF chromatin-remodeling complex and the tumor suppressor gene TP53 and provide preclinical evidence to support the targeting of MDM2 and MDM4 in this often-fatal pediatric cancer. SIGNIFICANCE: This study identifies two targets, MDM2 and MDM4, as vulnerabilities in a deadly pediatric cancer and provides preclinical evidence that compounds inhibiting these proteins have therapeutic potential.
Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Tumor Rabdoide/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patologia , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
ATRX alterations occur at high frequency in neuroblastoma of adolescents and young adults. Particularly intriguing are the large N-terminal deletions of ATRX (Alpha Thalassemia/Mental Retardation, X-linked) that generate in-frame fusion (IFF) proteins devoid of key chromatin interaction domains, while retaining the SWI/SNF-like helicase region. We demonstrate that ATRX IFF proteins are redistributed from H3K9me3-enriched chromatin to promoters of active genes and identify REST as an ATRX IFF target whose activation promotes silencing of neuronal differentiation genes. We further show that ATRX IFF cells display sensitivity to EZH2 inhibitors, due to derepression of neurogenesis genes, including a subset of REST targets. Taken together, we demonstrate that ATRX structural alterations are not loss-of-function and put forward EZH2 inhibitors as a potential therapy for ATRX IFF neuroblastoma.
Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Neuroblastoma/tratamento farmacológico , Proteínas Repressoras/genética , Proteína Nuclear Ligada ao X/genética , Animais , Sequência de Bases/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Feminino , Histonas/metabolismo , Humanos , Masculino , Camundongos , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/cirurgia , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Regiões Promotoras Genéticas , Domínios Proteicos/genética , Deleção de Sequência , Proteína Nuclear Ligada ao X/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The amphioxus Hox cluster is often viewed as "archetypal" for the chordate lineage. Here, we present a descriptive account of the 448 kb region spanning the Hox cluster of the amphioxus Branchiostoma floridae from Hox14 to Hox1. We provide complete coding sequences of all 14 previously described amphioxus sequences and give a detailed analysis of the conserved noncoding regulatory sequence elements. We find that the posterior part of the Hox cluster is so highly derived that even the complete genomic sequence is insufficient to decide whether the posterior Hox genes arose by independent duplications or whether they are true orthologs of the corresponding gnathostome paralog groups. In contrast, the anterior region is much better conserved. The amphioxus Hox cluster strongly excludes repetitive elements with the exception of two repeat islands in the posterior region. Repeat exclusion is also observed in gnathostomes, but not protostome Hox clusters. We thus hypothesize that the much shorter vertebrate Hox clusters are the result of extensive resolution of the redundancy of regulatory DNA after the genome duplications rather than the consequence of a selection pressure to remove nonfunctional sequence from the Hox cluster.
Assuntos
Evolução Biológica , Cordados não Vertebrados/genética , Genes Homeobox , Genômica , Família Multigênica , Animais , Cromossomos Artificiais , Sequências Repetitivas de Ácido NucleicoRESUMO
This unit describes a method for determining the accessibility of chromatinized DNA and nucleosome occupancy in the same assay. Enzymatic digestion of chromatin using micrococcal nuclease (MNase) is optimized for liberation, retrieval, and characterization of DNA fragments from chromatin. MNase digestion is performed in a titration series, and the DNA fragments are isolated and sequenced for each individual digest independently. These sequenced fragments are then collectively analyzed in a novel bioinformatics pipeline to produce a metric describing MNase accessibility of chromatin (MACC) and nucleosome occupancy. This approach allows profiling of the entire genome including regions of open and closed chromatin. Moreover, the MACC protocol can be supplemented with a histone immunoprecipitation step to estimate and compare both histone and non-histone DNA protection components. © 2017 by John Wiley & Sons, Inc.
Assuntos
Cromatina/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Nucleossomos/metabolismo , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , DNA/isolamento & purificação , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Nuclease do Micrococo/metabolismo , Ligação ProteicaRESUMO
Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation.
Assuntos
Cromatina/metabolismo , Nuclease do Micrococo , Nucleossomos/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Células K562 , Camundongos , Células-Tronco Embrionárias Murinas , Células-Tronco Neurais , Regiões Promotoras Genéticas , Análise de Sequência de RNARESUMO
UNLABELLED: The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest. By examining single-guide RNAs that map to multiple genomic sites, we found that this cell response to CRISPR/Cas9 editing correlated strongly with the number of target loci. These observations indicate that genome targeting by CRISPR/Cas9 elicits a gene-independent antiproliferative cell response. This effect has important practical implications for the interpretation of CRISPR/Cas9 screening data and confounds the use of this technology for the identification of essential genes in amplified regions. SIGNIFICANCE: We found that the number of CRISPR/Cas9-induced DNA breaks dictates a gene-independent antiproliferative response in cells. These observations have practical implications for using CRISPR/Cas9 to interrogate cancer gene function and illustrate that cancer cells are highly sensitive to site-specific DNA damage, which may provide a path to novel therapeutic strategies. Cancer Discov; 6(8); 914-29. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Munoz et al., p. 900This article is highlighted in the In This Issue feature, p. 803.
Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dosagem de Genes , Marcação de Genes , Genômica , Linhagem Celular Tumoral , Clivagem do DNA , Variações do Número de Cópias de DNA , Dano ao DNA , Pontos de Checagem da Fase G2 do Ciclo Celular , Amplificação de Genes , Edição de Genes , Expressão Gênica , Técnicas de Inativação de Genes , Marcação de Genes/métodos , Genes Essenciais , Genômica/métodos , Ensaios de Triagem em Larga Escala , Humanos , RNA Guia de CinetoplastídeosAssuntos
Neuroblastoma/etiologia , Biomarcadores Tumorais , Sistemas CRISPR-Cas , Gerenciamento Clínico , Suscetibilidade a Doenças , Marcação de Genes , Humanos , Terapia de Alvo Molecular , Mutação , Neuroblastoma/diagnóstico , Neuroblastoma/terapia , Proteína Nuclear Ligada ao X/antagonistas & inibidoresRESUMO
Chromatin structure determines DNA accessibility. We compare nucleosome occupancy in mouse and human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs) and differentiated cell types using MNase-seq. To address variability inherent in this technique, we developed a bioinformatic approach to identify regions of difference (RoD) in nucleosome occupancy between pluripotent and somatic cells. Surprisingly, most chromatin remains unchanged; a majority of rearrangements appear to affect a single nucleosome. RoDs are enriched at genes and regulatory elements, including enhancers associated with pluripotency and differentiation. RoDs co-localize with binding sites of key developmental regulators, including the reprogramming factors Klf4, Oct4/Sox2 and c-Myc. Nucleosomal landscapes in ESC enhancers are extensively altered, exhibiting lower nucleosome occupancy in pluripotent cells than in somatic cells. Most changes are reset during reprogramming. We conclude that changes in nucleosome occupancy are a hallmark of cell differentiation and reprogramming and likely identify regulatory regions essential for these processes.
Assuntos
Reprogramação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Nucleossomos/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Nucleossomos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítio de Iniciação de TranscriçãoRESUMO
The domestic dog, Canis familiaris, is a well-established model system for mapping trait and disease loci. While the original draft sequence was of good quality, gaps were abundant particularly in promoter regions of the genome, negatively impacting the annotation and study of candidate genes. Here, we present an improved genome build, canFam3.1, which includes 85 MB of novel sequence and now covers 99.8% of the euchromatic portion of the genome. We also present multiple RNA-Sequencing data sets from 10 different canine tissues to catalog â¼175,000 expressed loci. While about 90% of the coding genes previously annotated by EnsEMBL have measurable expression in at least one sample, the number of transcript isoforms detected by our data expands the EnsEMBL annotations by a factor of four. Syntenic comparison with the human genome revealed an additional â¼3,000 loci that are characterized as protein coding in human and were also expressed in the dog, suggesting that those were previously not annotated in the EnsEMBL canine gene set. In addition to â¼20,700 high-confidence protein coding loci, we found â¼4,600 antisense transcripts overlapping exons of protein coding genes, â¼7,200 intergenic multi-exon transcripts without coding potential, likely candidates for long intergenic non-coding RNAs (lincRNAs) and â¼11,000 transcripts were reported by two different library construction methods but did not fit any of the above categories. Of the lincRNAs, about 6,000 have no annotated orthologs in human or mouse. Functional analysis of two novel transcripts with shRNA in a mouse kidney cell line altered cell morphology and motility. All in all, we provide a much-improved annotation of the canine genome and suggest regulatory functions for several of the novel non-coding transcripts.
Assuntos
Cães/genética , Genoma , Polimorfismo de Nucleotídeo Único , Animais , Linhagem Celular , Éxons , Perfilação da Expressão Gênica , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Oligonucleotídeos Antissenso/química , Podócitos/citologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA não Traduzido , Análise de Sequência de RNARESUMO
Although a great deal of information has accumulated regarding the mechanisms underlying constitutional DNA rearrangements associated with inherited disorders, virtually nothing is known about the molecular processes involved in acquired neoplasia-associated chromosomal rearrangements. Isochromosome 17q, or "i(17q)," is one of the most common structural abnormalities observed in human neoplasms. We previously identified a breakpoint cluster region for i(17q) formation in 17p11.2 and hypothesized that genome architectural features could be responsible for this clustering. To address this hypothesis, we precisely mapped the i(17q) breakpoints in 11 patients with different hematologic malignancies and determined the genomic structure of the involved region. Our results reveal a complex genomic architecture in the i(17q) breakpoint cluster region, characterized by large ( approximately 38-49-kb), palindromic, low-copy repeats, strongly suggesting that somatic rearrangements are not random events but rather reflect susceptibilities due to the genomic structure.