Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nano Lett ; 13(4): 1516-21, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23461679

RESUMO

We experimentally demonstrate the control of the spontaneous emission rate and the radiation pattern of colloidal quantum dots deterministically positioned in a plasmonic patch antenna. The antenna consists of a thin gold microdisk separated from a planar gold layer by a few tens of nanometers thick dielectric layer. The emitters are shown to radiate through the entire patch antenna in a highly directional and vertical radiation pattern. Strong acceleration of spontaneous emission is observed, depending on the antenna geometry. Considering the double dipole structure of the emitters, this corresponds to a Purcell factor up to 80 for dipoles perpendicular to the disk.


Assuntos
Coloides/química , Ouro/química , Pontos Quânticos , Desenho de Equipamento , Luz , Nanoestruturas/química , Nanotecnologia , Óptica e Fotônica , Ressonância de Plasmônio de Superfície
2.
Radiother Oncol ; 200: 110520, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39242031

RESUMO

PURPOSE: Substantiating data guiding clinical decision making in locally recurrent rectal cancer (LRRC) is lacking, specifically in target volume (TV) definition for chemoradiotherapy (CRT). A case-by-case review of local re-recurrences (re-LRRC) after multimodal treatment for LRRC was performed, to determine location of re-LRRC and assess whether treatment could have been improved. METHODS: All patients treated with curative intent for LRRC at the Catharina Hospital Eindhoven from October 2016 onwards, in whom complete imaging of (re-)LRRC and radiotherapy was available, were retrieved. Patients were discussed in plenary meetings with expert colorectal surgeons, radiation oncologists and radiologists. Each case was classified based on re-LRRC location, whether it was in accordance with the (current) radiotherapy protocol, and whether multimodal management would have been different in retrospect. RESULTS: Thirty-three cases were discussed. LRRC treatment was deemed suboptimal in 17/33 patients, due to different target volumes (13/17) and/or different surgery (9/17). 15/33 (46 %) of re-LRRC developed in-field of the prior radiotherapy TV, possibly showing RT-resistant disease. Other re-LRRCs developed out-field (n = 5, 15 %), marginally (n = 6, 18 %), or in a combined fashion (n = 7, 21 %). In retrospect, 48 % of cases were irradiated in line with current TV recommendations. TVs of 13/33 cases would have been altered if irradiated today. CONCLUSION: This study highlights room for improvement within current standard-ofcare treatment for LRRC. Different surgical management or TVs may have improved outcome in up to half of discussed cases. Further delineation guideline development, incorporating the results from this study, may improve oncological outcome, specifically local control, for LRRC patients.

3.
J Phys Chem Lett ; 14(27): 6209-6216, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37384838

RESUMO

Self-assembled linear chains of CdSe nanoplatelets are known to exhibit highly efficient Förster resonant energy transfer (FRET) leading to fast exciton diffusion between platelets. Here, we compare the luminescence decay dynamics of single nanoplatelets, clusters of a few platelets, and self-assembled chains. As the number of stacked platelets is increased, we show that the luminescence decay becomes faster, which can be interpreted as the FRET-mediated effect of quenchers: excitons may diffuse to nearby quenchers so that their decay rate is increased. On the other hand, a minor slow decay component is also observed for single platelets, corresponding to trapping-detrapping mechanisms in nearby trap states. The contribution of the slow component is enhanced for the platelet chains. This is consistent with a FRET-mediated trapping mechanism where the excitons would diffuse from platelet to platelet until they reach a trap state. Finally, we develop toy models for the FRET-mediated quenching and trapping effects on the decay curves and analyze the relevant parameters.

4.
Domest Anim Endocrinol ; 73: 106441, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32113801

RESUMO

Work during the last decade has led to a novel hypothesis for a question that is half a century old: how is the secretory activity of GnRH neurons synchronized to produce episodic GnRH secretion. This hypothesis posits that a group of neurons in the arcuate nucleus (ARC) that contain kisspeptin, neurokinin B (NKB), and dynorphin (known as KNDy neurons) fire simultaneously to drive each GnRH pulse. Kisspeptin is proposed to be the output signal to GnRH neurons with NKB and dynorphin acting within the KNDy network to initiate and terminate each pulse, respectively. This review will focus on the importance of neuroanatomical studies in general and, more specifically, on the work of Dr Marcel Amstalden during his postdoctoral fellowship with the authors, to the development and testing of this hypothesis. Critical studies in sheep that laid the foundation for much of the KNDy hypothesis included the report that a group of neurons in the ARC contain both NKB and dynorphin and appear to form an interconnected network capable of firing synchronously, and Marcel's observations that the NKB receptor is found in most KNDy neurons, but not in any GnRH neurons. Moreover, reports that almost all dynorphin-NKB neurons and kisspeptin neurons in the ARC contained steroid receptors led directly to their common identification as "KNDy" neurons. Subsequent anatomical work demonstrating that KNDy neurons project to GnRH somas and terminals, and that kisspeptin receptors are found in GnRH, but not KNDy neurons, provided important tests of this hypothesis. Recent work has explored the time course of dynorphin release onto KNDy neurons and has begun to apply new approaches to the issue, such as RNAscope in situ hybridization and the use of whole tissue optical clearing with light-sheet microscopy. Together with other approaches, these anatomical techniques will allow continued exploration of the functions of the KNDy population and the possible role of other ARC neurons in generation of GnRH pulses.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Animais , Animais Domésticos , Regulação da Expressão Gênica/fisiologia , Hormônio Liberador de Gonadotropina/genética
5.
Neuroscience ; 144(1): 223-31, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17084036

RESUMO

The present study quantified the cleaved form of the microtubule-associated protein tau (cleaved MAP-tau, C-tau), a previously demonstrated marker of CNS toxicity, following the administration of monoamine-depleting regimens of the psychostimulant drugs amphetamine (AMPH), methamphetamine (METH), +/-3,4-methylenedioxymethamphetamine (MDMA), or para-methoxyamphetamine (PMA) in an attempt to further characterize psychostimulant-induced toxicity. A dopamine (DA)-depleting regimen of AMPH produced an increase in C-tau immunoreactivity in the striatum, while a DA- and serotonin (5-HT)-depleting regimen of METH produced an increase in the number of C-tau immunoreactive cells in the striatum and CA2/CA3 and dentate gyrus regions of the hippocampus. MDMA and PMA, two psychostimulant drugs that produce selective 5-HT depletion in the striatum, had no effect on C-tau immunoreactivity in the striatum or hippocampus. Furthermore, 5,7-dihydroxytryptamine (5,7-DHT), an established 5-HT selective neurotoxin, did not produce an increase in C-tau immunoreactivity. Dual fluorescent immunocytochemistry with antibodies to glial fibrillary acidic protein (GFAP) and C-tau indicated that C-tau immunoreactivity was present in astrocytes, not neurons, suggesting that increased C-tau may be an alternative indicator of reactive gliosis. The present results are consistent with previous findings that the DA-depleting psychostimulants AMPH and METH produce reactive gliosis whereas the 5-HT-depleting drugs MDMA and PMA, as well as the known 5-HT selective neurotoxin 5,7-DHT, do not produce an appreciable glial response.


Assuntos
Anfetaminas/farmacologia , Química Encefálica/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas tau/biossíntese , 5,7-Di-Hidroxitriptamina/farmacologia , Animais , Interpretação Estatística de Dados , Dopamina/metabolismo , Proteína Glial Fibrilar Ácida/biossíntese , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Masculino , Metanfetamina/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Serotoninérgicos/farmacologia
6.
Neuroscience ; 137(4): 1259-76, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16388908

RESUMO

The limbic system plays an important role in the regulation of sexual motivation and reward. At the core of this system is an interconnected mesocorticolimbic circuit, comprised of the ventral tegmental area, nucleus accumbens and medial prefrontal cortex. Previously, our laboratory showed that sexual behavior causes neural activation in the ventral tegmental area of male rats. The main goal of this study is to identify afferent inputs to ventral tegmental area neurons that may contribute to their activation during sexual behavior. Hence, the anterograde tracer biotinylated dextran amine was injected into subregions of the rat medial prefrontal cortex, which is known to project to the ventral tegmental area. Visualization of biotinylated dextran amine-labeled axons was combined with immunostaining for sex-induced Fos expression. Quantitative analysis showed that the majority of sex-activated ventral tegmental area neurons receive putative contacts from the infralimbic and prelimbic--but not the anterior cingulate--subregions of the medial prefrontal cortex. Thus, inputs from infralimbic area and prelimbic are in an anatomical position to provide a major source of input during sexual behavior. A second goal of this study was to determine if the medial prefrontal cortex projects to sex-activated neurons in other brain regions important for sexual behavior and motivation. Infralimbic area and prelimbic area sent projections to nucleus accumbens, medial preoptic area, principal nucleus of the bed nucleus of the stria terminalis, basolateral amygdala, and parvocellular subparafasicular thalamic nucleus. Thus, the infralimbic and prelimbic subregions of the medial prefrontal cortex may also influence sexual behavior and motivation via brain regions other than the ventral tegmental area.


Assuntos
Vias Eferentes/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Axônios/fisiologia , Mapeamento Encefálico , Vias Eferentes/citologia , Imuno-Histoquímica , Masculino , Modelos Animais , Neurônios/citologia , Córtex Pré-Frontal/citologia , Ratos , Ratos Sprague-Dawley
7.
Neuropharmacology ; 107: 122-130, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26946431

RESUMO

Natural rewards and psychostimulants cause similar neural plasticity in the nucleus accumbens (NAc). In addition, sexual experience in male rats causes increased locomotor activity and conditioned place preference (CPP) induced by d-Amphetamine (amph). The latter is dependent on a period of abstinence from sexual reward. In this study, the role of mGluR5 activation in the NAc for expression of mating and the cross-sensitizing effects of sexual experience was tested. First, intra-NAc infusions of mGluR5 antagonists MPEP (1 or 10 µg/µL) or MTEP (1 µg/µL) 15 min prior to mating during 4 daily sessions had no effect on male rat sexual behavior. Subsequently, these sexually experienced males were tested for amph-induced locomotor activity and CPP after one week of abstinence from sexual reward. In addition, sexually naïve males that received MPEP, MTEP or vehicle infusions prior to 4 daily handling sessions were included. Cross-sensitization of locomotion or CPP was not prevented by NAc mGluR5 antagonism during acquisition of sexual experience. Instead, sexually naive animals that received NAc mGluR5 antagonists without mating demonstrated sensitized amph-induced locomotor responses and enhanced CPP on par with sexually experienced males. Finally, we showed that sexual experience caused prolonged down-regulation of mGluR5 protein in the NAc, dependent on abstinence from sexual behavior. Together, these findings suggest that mGluR5 activation in the NAc is not essential for the expression of mating, but that experience-induced reduction in mGluR5 protein may contribute to the cross-sensitization of amph responses by sexual experience and abstinence.


Assuntos
Anfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Núcleo Accumbens/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Modelos Animais , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Piridinas/farmacologia , Distribuição Aleatória , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Recompensa , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia , Tiazóis/farmacologia
8.
J Neuroendocrinol ; 28(12)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28328155

RESUMO

Puberty onset involves increased gonadotrophin-release (GnRH) release as a result of decreased sensitivity to oestrogen (E2 )-negative feedback. Because GnRH neurones lack E2 receptor α, this pathway must contain interneurones. One likely candidate is KNDy neurones (kisspeptin, neurokinin B, dynorphin). The overarching hypothesis of the present study was that the prepubertal hiatus in luteinising hormone (LH) release involves reduced kisspeptin and/or heightened dynorphin input. We first tested the specific hypothesis that E2 would reduce kisspeptin-immunopositive cell numbers and increase dynorphin-immunopositive cell numbers. We found that kisspeptin cell numbers were higher in ovariectomised (OVX) lambs than OVX lambs treated with E2 (OVX+ E2 ) or those left ovary-intact. Very few arcuate dynorphin cells were identified in any group. Next, we hypothesised that central blockade of κ-opioid receptor (KOR) would increase LH secretion at a prepubertal (6 months) but not postpubertal (10 months) age. Luteinising hormone pulse frequency and mean LH increased during infusion of a KOR antagonist, norbinaltorphimine, in OVX + E2 lambs at the prepubertal age but not in the same lambs at the postpubertal age. We next hypothesised that E2 would increase KOR expression in GnRH neurones or alter synaptic input to KNDy neurones in prepubertal ewes. Oestrogen treatment decreased the percentage of GnRH neurones coexpressing KOR (approximately 68%) compared to OVX alone (approximately 78%). No significant differences in synaptic contacts per cell between OVX and OVX + E2 groups were observed. Although these initial data are consistent with dynorphin inhibiting pulsatile LH release prepubertally, additional work will be necessary to define the source and mechanisms of this inhibition.


Assuntos
Dinorfinas/fisiologia , Estrogênios/fisiologia , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Puberdade , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Estrogênios/administração & dosagem , Estrogênios/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/sangue , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ovariectomia , Receptores Opioides kappa/metabolismo , Carneiro Doméstico , Sinaptofisina/metabolismo
9.
J Neuroendocrinol ; 28(6)2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27059932

RESUMO

The neuropeptides neurokinin B (NKB) and kisspeptin are potent stimulators of gonadotrophin-releasing hormone (GnRH)/luteinsing hormone (LH) secretion and are essential for human fertility. We have recently demonstrated that selective activation of NKB receptors (NK3R) within the retrochiasmatic area (RCh) and the preoptic area (POA) triggers surge-like LH secretion in ovary-intact ewes, whereas blockade of RCh NK3R suppresses oestradiol-induced LH surges in ovariectomised ewes. Although these data suggest that NKB signalling within these regions of the hypothalamus mediates the positive-feedback effects of oestradiol on LH secretion, the pathway through which it stimulates GnRH/LH secretion remains unclear. We proposed that the action of NKB on RCh neurones drives the LH surge by stimulating kisspeptin-induced GnRH secretion. To test this hypothesis, we quantified the activation of the preoptic/hypothalamic populations of kisspeptin neurones in response to POA or RCh administration of senktide by dual-label immunohistochemical detection of kisspeptin and c-Fos (i.e. marker of neuronal activation). We then administered the NK3R agonist, senktide, into the RCh of ewes in the follicular phase of the oestrous cycle and conducted frequent blood sampling during intracerebroventricular infusion of the kisspeptin receptor antagonist Kp-271 or saline. Our results show that the surge-like secretion of LH induced by RCh senktide administration coincided with a dramatic increase in c-Fos expression within arcuate nucleus (ARC) kisspeptin neurones, and was completely blocked by Kp-271 infusion. We substantiate these data with evidence of direct projections of RCh neurones to ARC kisspeptin neurones. Thus, NKB-responsive neurones in the RCh act to stimulate GnRH secretion by inducing kisspeptin release from KNDy neurones.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Receptores da Neurocinina-3/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Feminino , Infusões Intraventriculares , Hormônio Luteinizante/sangue , Neurônios/fisiologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Área Pré-Óptica , Receptores de Kisspeptina-1/antagonistas & inibidores , Ovinos , Substância P/análogos & derivados , Substância P/antagonistas & inibidores , Substância P/farmacologia
10.
J Neuroendocrinol ; 27(2): 100-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25496429

RESUMO

Prenatal exposure of the female ovine foetus to excess testosterone leads to neuroendocrine disruptions in adulthood, as demonstrated by defects in responsiveness with respect to the ability of gonadal steroids to regulate gonadotrophin-releasing hormone (GnRH) secretion. In the ewe, neurones of the arcuate nucleus (ARC), which co-expresses kisspeptin, neurokinin B (NKB) and dynorphin (termed KNDy cells), play a key role in steroid feedback control of GnRH and show altered peptide expression after prenatal testosterone treatment. KNDy cells also co-localise NKB receptors (NK3R), and it has been proposed that NKB may act as an autoregulatory transmitter in KNDy cells where it participates in the mechanisms underlying steroid negative-feedback. In addition, recent evidence suggests that NKB/NK3R signalling may be involved in the positive-feedback actions of oestradiol leading to the GnRH/luteinising hormone (LH) surge in the ewe. Thus, we hypothesise that decreased expression of NK3R in KNDy cells may be present in the brains of prenatal testosterone-treated animals, potentially contributing to reproductive defects. Using single- and dual-label immunohistochemistry we found NK3R-positive cells in diverse areas of the hypothalamus; however, after prenatal testosterone treatment, decreased numbers of NK3R immunoreactive (-IR) cells were seen only in the ARC. Moreover, dual-label confocal analyses revealed a significant decrease in the percentage of KNDy cells (using kisspeptin as a marker) that co-localised NK3R. To investigate how NKB ultimately affects GnRH secretion in the ewe, we examined GnRH neurones in the preoptic area (POA) and mediobasal hypothalamus (MBH) for the presence of NK3R. Although, consistent with earlier findings, we found no instances of NK3R co-localisation in GnRH neurones in either the POA or MBH; in addition, > 70% GnRH neurones in both areas were contacted by NK3R-IR presynaptic terminals suggesting that, in addition to its role at KNDy cell bodies, NKB may regulate GnRH neurones by presynaptic actions. In summary, the finding of decreased NK3R within KNDy cells in prenatal testosterone-treated sheep complements previous observations of decreased NKB and dynorphin in the same population, and may contribute to deficits in the feedback control of GnRH/LH secretion in this animal model.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Feto/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Receptores da Neurocinina-3/imunologia , Testosterona/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Dinorfinas/metabolismo , Feminino , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Gravidez , Ovinos , Testosterona/farmacologia
11.
J Neuroendocrinol ; 27(7): 624-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25976424

RESUMO

Kisspeptin neurones located in the arcuate nucleus (ARC) and preoptic area (POA) are critical mediators of gonadal steroid feedback onto gonadotrophin-releasing hormone (GnRH) neurones. ARC kisspeptin cells that co-localise neurokinin B (NKB) and dynorphin (Dyn), are collectively referred to as KNDy (Kisspeptin/NKB/Dyn) neurones, and have been shown in mice to also co-express the vesicular glutamate transporter, vGlut2, an established glutamatergic marker. The ARC in rodents has long been known as a site of hormone-induced neuroplasticity, and changes in synaptic inputs to ARC neurones in rodents occur over the oestrous cycle. Based on this evidence, the the present study aimed to examine possible changes across the ovine oestrous cycle in synaptic inputs onto kisspeptin cells in the ARC (KNDy) and POA, and inputs onto GnRH neurones. Gonadal-intact breeding season ewes were perfused using 4% paraformaldehyde during either the luteal or follicular phase of the oestrous cycle, with the latter group killed at the time of the luteinising hormone (LH) surge. Hypothalamic sections were processed for triple-label immunodetection of kisspeptin/vGlut2/synaptophysin or kisspeptin/vGlut2/GnRH. The total numbers of synaptophysin- and vGlut2-positive inputs to ARC KNDy neurones were significantly increased at the time of the LH surge compared to the luteal phase; because these did not contain kisspeptin, they do not arise from KNDy neurones. By contrast to the ARC, the total number of synaptophysin-positive inputs onto POA kisspeptin neurones did not differ between luteal phase and surge animals. The total number of kisspeptin and vGlut2 inputs onto GnRH neurones in the mediobasal hypothalamus (MBH) was also increased during the LH surge, and could be attributed to an increase in the number of KNDy (double-labelled kisspeptin + vGlut2) inputs. Taken together, these results provide novel evidence of synaptic plasticity at the level of inputs onto KNDy and GnRH neurones during the ovine oestrous cycle. Such changes may contribute to the generation of the preovulatory GnRH/LH surge.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Ovulação/metabolismo , Área Pré-Óptica/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Animais , Ciclo Estral/metabolismo , Feminino , Ovinos
12.
Chem Commun (Camb) ; 51(77): 14547, 2015 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-26346591

RESUMO

Correction for 'Quantum dot-imprinted polymers with size and shell-selective recognition properties' by S. Gam-Derouich et al., Chem. Commun., 2015, DOI: 10.1039/c5cc05203c.

13.
Chem Commun (Camb) ; 51(80): 14933-6, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26307147

RESUMO

The emergence of nanotechnology has stimulated a great deal of research to detect engineered nanoparticles spread out in the environment. We address this issue here by designing quantum dot-imprinted polymers for the speciation of nanoparticles based on their size, shape and surface chemistry.

14.
Endocrinology ; 142(11): 4976-82, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11606466

RESUMO

The middle-age decline in reproductive function is manifested by reduced LHRH release, resulting in a decreased magnitude and delay of onset of the LH surge. Earlier studies suggested that the reductions in LHRH neural activation in middle-aged rats resulted from deficits in the afferent drive to the LHRH neurons. One critical afferent to the LHRH neurons lies in the anteroventral periventricular preoptic area (AVPv) nucleus. The neurons of the medial AVPv are synchronously activated to express Fos with LHRH neurons at the time of an LH surge in young adult animals. The present study examined whether, in middle age, reductions in the activation of AVPv neurons accompany the reduction in Fos activation in LHRH neurons. Young (3- to 4-month-old) and middle-aged (10- to 12-month-old) spontaneously cycling and ovariectomized steroid-replaced rats were killed during peak and early descending phase of the LH surge, and their brains were examined for Fos in LHRH and AVPv neurons. Young animals had a characteristic increase in Fos expression in both LHRH and AVPv neurons. In middle-aged rats, the proportion of LHRH neurons expressing Fos at the time of an LH surge was reduced by approximately 50%, irrespective of whether surges were spontaneous or induced by exogenous steroids. A similar reduction in the number of Fos+ cells (by approximately 50%) was noted in the medial AVPv. Linear regression analysis of the relationship between the extent of Fos activation in LHRH and AVPv neurons revealed a strong positive correlation (r(2) = 0.66; P < 0.01), suggesting that changes in the AVPv's drive to LHRH neurons underlie the decrease in LHRH activity in middle age. A second series of experiments examined whether decreased input from the AVPv could account for reduced Fos activation in LHRH neurons seen in middle-aged animals. When the medial AVPv was lesioned, LHRH neurons failed to express Fos on the side ipsilateral to the lesion. Animals with lesioned medial AVPv also had significantly lower LH values than animals with an intact medial AVPv. Taken together, these data suggest that a principal deficit in middle-aged rats is the ability of the medial AVPv to stimulate LHRH neurons.


Assuntos
Envelhecimento/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/fisiologia , Área Pré-Óptica/fisiologia , Proteínas Proto-Oncogênicas c-fos/fisiologia , Animais , Ventrículos Cerebrais , Feminino , Hormônio Luteinizante/metabolismo , Área Pré-Óptica/citologia , Ratos , Ratos Sprague-Dawley
15.
Endocrinology ; 142(3): 1317-24, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11181550

RESUMO

The GnRH neurosecretory system undergoes marked structural and functional changes throughout life. The initial goal of this study was to examine the neuroanatomical relationship between GnRH neurons and a glycoprotein implicated in neuroplasticity, the polysialylated form of neural cell adhesion molecule (PSA-NCAM). Using dual label immunocytochemistry in conjunction with confocal microscopy, we determined that fibers, terminals, and perikarya of GnRH neurons in adult ovariectomized ewes are intimately associated with PSA-NCAM. In the preoptic area, intense PSA-NCAM immunoreactivity was evident around the periphery of GnRH cell bodies. The second goal of this study was to determine whether PSA-NCAM expression associated with GnRH neurons varies in conjunction with seasonal changes in the activity of the GnRH neurosecretory system in ovariectomized ewes treated with constant release implants of estradiol. During the breeding season when reproductive neuroendocrine activity was enhanced, the expression of PSA-NCAM immunoreactivity associated with GnRH neurons was significantly greater than that during anestrus when GnRH secretion was reduced. This difference, which occurred despite an unchanging ovarian steroid milieu, was not observed in preoptic area structures devoid of GnRH immunoreactivity, suggesting that the seasonal change is at least partially specific to the GnRH system. The close association between PSA-NCAM and GnRH neurons and the change in this relationship in conjunction with seasonal alterations in GnRH secretion provide anatomical evidence that this molecule may contribute to seasonal remodeling of the GnRH neurosecretory system of the adult.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Molécula L1 de Adesão de Célula Nervosa , Moléculas de Adesão de Célula Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Sistemas Neurossecretores/fisiologia , Ácidos Siálicos/fisiologia , Animais , Implantes de Medicamento , Estradiol/farmacologia , Feminino , Hormônio Luteinizante/sangue , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Ovariectomia , Reprodução/fisiologia , Estações do Ano , Ovinos , Ácidos Siálicos/metabolismo , Coloração e Rotulagem
16.
J Comp Neurol ; 399(2): 189-209, 1998 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-9721903

RESUMO

In the male Syrian hamster, mating is dependent on chemosensory and hormonal stimuli, and interruption of either input prevents copulation. The medial amygdaloid nucleus (Me) is a key nodal point in the neural circuitry controlling male sexual behavior because it relays both odor and steroid cues. Me is comprised of two major subdivisions, anterior (MeA) and posterior (MeP), which have distinct, although overlapping efferent projections. The present study investigated the afferents and efferents of MeA and MeP by using combined anterograde and retrograde tract tracing. Phaseolus vulgaris-leucoagglutinin and cholera toxin B were injected by iontophoresis through a single glass micropipette and detected by immunohistochemistry. MeA has widespread connections with olfactory structures, whereas MeP is heavily interconnected with steroid-responsive brain regions. The efferent projections of MeA and MeP were similar to those reported previously for the rat and hamster. In particular, MeP projects to the posteromedial subdivision of the bed nucleus of the stria terminalis (BNST) and to the medial preoptic nucleus, whereas MeA projects to adjacent subnuclei in BNST and the preoptic area. MeA and MeP also have distinct patterns of afferent input. Furthermore, the combination of anterograde and retrograde tract tracers shows that MeA and MeP are each bidirectionally connected with each other and with limbic nuclei. These results demonstrate that subnuclei of Me are interconnected with limbic structures in hamster brain. These connections may contribute to chemosensory and hormonal integration to control male sexual behavior.


Assuntos
Tonsila do Cerebelo/citologia , Mesocricetus/anatomia & histologia , Bulbo Olfatório/citologia , Área Pré-Óptica/citologia , Núcleos Septais/citologia , Animais , Toxina da Cólera , Corpo Estriado/citologia , Cricetinae , Masculino , Mesencéfalo/citologia , Microinjeções , Vias Neurais , Fito-Hemaglutininas , Tálamo/citologia
17.
J Comp Neurol ; 397(3): 421-35, 1998 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-9674566

RESUMO

The medial preoptic nucleus (MPN) is an essential site for the regulation of male sexual behavior. Previous studies using c-fos as a marker for neural activation have shown that copulation increased c-fos expression in the MPN. Neural activation was also present in brain regions that are connected with the MPN and are involved in male sexual behavior, including the posteromedial bed nucleus of the stria terminalis (BNSTpm), posterodorsal preoptic nucleus (PD), posterodorsal medial amygdala (MEApd), and parvocellular subparafascicular thalamic nucleus (SPFp). The present study investigated whether the copulation-induced, activated neurons in these brain regions are involved in the bidirectional connections with the MPN. Therefore, mating-induced Fos expression was combined with application of anterograde (biotinylated dextran amine) or retrograde (cholera toxin B subunit) tracers in the MPN. The results demonstrated that neurons in the BNSTpm, PD, MEApd, and SPFp that project to the MPN were activated following copulation. However, in males that displayed sexual behavior but did not achieve ejaculation, few double-labeled neurons were evident, although both retrogradely labeled neurons and Fos-immunoreactive cells were present. In addition, retrograde neurons that expressed Fos were located in discrete subdivisions within the brain regions studied, where Fos is induced after ejaculation. Likewise, anterogradely labeled fibers originating from the MPN were not distributed homogeneously but were particularly dense in these discrete subdivisions. These results demonstrate that copulation-induced Fos-positive neurons in specific subdivisions of the BNSTpm, PD, MEApd, and SPFp have bidirectional connections with the MPN. Taken together with previous findings, this supports the existence of a discrete subcircuit within a larger neural network underlying male sexual behavior.


Assuntos
Encéfalo/fisiologia , Copulação/fisiologia , Área Pré-Óptica/fisiologia , Ratos/fisiologia , Caracteres Sexuais , Vias Aferentes/fisiologia , Animais , Vias Eferentes/fisiologia , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Transmissão Sináptica/fisiologia
18.
Neuroscience ; 78(4): 1027-35, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9174071

RESUMO

Mating behaviour in the male hamster requires chemosensory and hormonal cues, and copulation is abolished if either signal is interrupted. In addition, the integration of chemosensory stimuli with steroid signals is essential for mating. In castrated male hamsters, implantation ofa testosterone-filled cannula in the preoptic area stimulates mating behaviour. However, removal of the ipsilateral olfactory bulb prevents steroid facilitation of sexual activity. The present studies determined if the integration of chemosensory and hormonal cues necessary for mating behaviour is distributed within steroid-sensitive nuclei in the brain, or is restricted to the preoptic area. Specifically, the hypothesis was tested that the medial amygdala is capable of odour and hormone integration. Castrated male hamsters received an intracerebral implant of testosterone in the medial amygdala combined with removal of a single olfactory bulb, ipsilateral or contralateral to the implant. Mating behaviour did not increase after implant surgery and bulbectomy in either ipsilateral or contralateral bulbectomized males. In a second study, males were bulbectomized three weeks after implant surgery, to demonstrate the ability of testosterone in the medial amygdala to stimulate male sexual behaviour, and the loss of behaviour following bulbectomy. The results confirm that integration of odour and steroid cues is essential for mating in the male hamster. Moreover, the medial amygdaloid nucleus contributes to chemosensory and hormonal integration. However, compared with steroid stimulation in the preoptic area, the behavioural effects of testosterone in the medial amygdaloid nucleus are more sensitive to manipulations of the olfactory system, suggesting that the amygdala requires bilateral chemosensory input.


Assuntos
Tonsila do Cerebelo/fisiologia , Células Quimiorreceptoras/fisiologia , Sinais (Psicologia) , Hormônios Esteroides Gonadais/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Cricetinae , Implantes de Medicamento , Masculino , Mesocricetus , Odorantes , Bulbo Olfatório/fisiologia , Orquiectomia , Testosterona/administração & dosagem , Testosterona/farmacologia
19.
Neuroscience ; 77(4): 1151-61, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9130794

RESUMO

In the present study a detailed quantitative analysis was made using Fos as a marker for neural activation to define which subregions in the neural circuitry underlying male sexual behavior are involved in display of anogenital investigation versus copulation. Neural activity was differentially distributed following anogenital investigation versus mating and was restricted to specific subdivisions that form a heavily interconnected network. Chemosensory investigation increased neural activity in the posteromedial subdivision of the bed nucleus of the stria terminalis and the posterodorsal subdivision of the medial amygdala, brain regions that receive chemosensory signals processed through the olfactory bulbs, presumably reflecting the acquisition of chemosensory signals or the display of anogenital investigation. However, other sensory signals or sexual experience may also have contributed to the induction of neural activation in these brain areas. Moreover, consummatory behavior increased neural activity in the subparafascicular nucleus, a brain region that receives genital sensory inputs. In turn, this brain region projects to the medial preoptic nucleus and posterior nucleus of the amygdala, where neural activity was also abundant only following copulation. In addition, clusters of neurons were activated in the posteromedial subdivision of the bed nucleus of the stria terminalis and posterodorsal subdivision of the medial amygdala following consummatory behavior. The present study provides an anatomically detailed picture about the distribution of neural activation following sexual behavior in the rat, specifically in relation to differences following anogenital investigation versus mating.


Assuntos
Química Encefálica/fisiologia , Proteínas Proto-Oncogênicas c-fos/imunologia , Comportamento Sexual Animal/fisiologia , Tonsila do Cerebelo/química , Tonsila do Cerebelo/fisiologia , Canal Anal/inervação , Canal Anal/fisiologia , Animais , Feminino , Masculino , Mesencéfalo/química , Mesencéfalo/fisiologia , Pênis/inervação , Pênis/fisiologia , Área Pré-Óptica/química , Área Pré-Óptica/fisiologia , Proteínas Proto-Oncogênicas c-fos/análise , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Núcleos Talâmicos/química , Núcleos Talâmicos/fisiologia
20.
Neuroscience ; 124(1): 11-21, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14960335

RESUMO

The current study tested the hypothesis that sexual behavior is a biological stimulus for release of endogenous opioid peptides. In particular, activation of mu opioid receptors (MOR) in the medial preoptic area (MPOA), a key area for regulation of male sexual behavior, was studied in male rats. MOR endocytosis or internalization was used as a marker for ligand-induced receptor activation, utilizing confocal, electron, and bright microscopic analysis. Indeed, mating including one ejaculation induced receptor activation in the MPOA, demonstrated by increased immunoreactivity for MOR, increased numbers of endosome-like particles immunoreactive for MOR inside the cytoplasm of neurons, and increased percentage of neurons with three or more endosome-like particles inside the cytosol. Moreover, it was demonstrated that MOR activation occurred within 30 min following mating and was still evident after 6 h. Mating-induced internalization was prevented by treatment with the opioid receptor antagonist naloxone before mating, suggesting that mating-induced receptor activation is a result of action of endogenous MOR ligands. i.c.v. injections of MOR ligand [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin resulted in internalization of the MOR in a similar manner observed following mating. Finally, mating induced Fos expression in MOR containing neurons in the MPOA. However, naloxone pretreatment did not prevent Fos activation of MOR neurons, suggesting that Fos induction was not the result of MOR activation. In summary, these results provide further evidence that endogenous opioid peptides are released in the MPOA during male sexual behavior.


Assuntos
Copulação/fisiologia , Área Pré-Óptica/fisiologia , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Animais , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Feminino , Ligantes , Masculino , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa