RESUMO
The protein calexcitin was originally identified in molluscan photoreceptor neurons as a 20â kDa molecule which was up-regulated and phosphorylated following a Pavlovian conditioning protocol. Subsequent studies showed that calexcitin regulates the voltage-dependent potassium channel and the calcium-dependent potassium channel as well as causing the release of calcium ions from the endoplasmic reticulum (ER) by binding to the ryanodine receptor. A crystal structure of calexcitin from the squid Loligo pealei showed that the fold is similar to that of another signalling protein, calmodulin, the N- and C-terminal domains of which are known to separate upon calcium binding, allowing interactions with the target protein. Phosphorylation of calexcitin causes it to translocate to the cell membrane, where its effects on membrane excitability are exerted and, accordingly, L. pealei calexcitin contains two protein kinase C phosphorylation sites (Thr61 and Thr188). Thr-to-Asp mutations which mimic phosphorylation of the protein were introduced and crystal structures of the corresponding single and double mutants were determined, which suggest that the C-terminal phosphorylation site (Thr188) exerts the greatest effects on the protein structure. Extensive NMR studies were also conducted, which demonstrate that the wild-type protein predominantly adopts a more open conformation in solution than the crystallographic studies have indicated and, accordingly, normal-mode dynamic simulations suggest that it has considerably greater capacity for flexible motion than the X-ray studies had suggested. Like calmodulin, calexcitin consists of four EF-hand motifs, although only the first three EF-hands of calexcitin are involved in binding calcium ions; the C-terminal EF-hand lacks the appropriate amino acids. Hence, calexcitin possesses two functional EF-hands in close proximity in its N-terminal domain and one functional calcium site in its C-terminal domain. There is evidence that the protein has two markedly different affinities for calcium ions, the weaker of which is most likely to be associated with binding of calcium ions to the protein during neuronal excitation. In the current study, site-directed mutagenesis has been used to abolish each of the three calcium-binding sites of calexcitin, and these experiments suggest that it is the single calcium-binding site in the C-terminal domain of the protein which is likely to have a sensory role in the neuron.
Assuntos
Proteínas de Ligação ao Cálcio/química , Decapodiformes/química , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/química , Substituição de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cristalografia por Raios X , Decapodiformes/genética , Decapodiformes/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-AtividadeRESUMO
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor, which is covalently linked by a thioether bridge to an invariant cysteine residue (Cys241 in the Bacillus megaterium enzyme). The cofactor is extended during the reaction by the sequential addition of the four substrate molecules, which are released as a linear tetrapyrrole product. Expression in Escherichia coli of a His-tagged form of B. megaterium PBGD has permitted the X-ray analysis of the enzyme from this species at high resolution, showing that the cofactor becomes progressively oxidized to the dipyrromethene and dipyrromethanone forms. In previously solved PBGD structures, the oxidized cofactor is in the dipyromethenone form, in which both pyrrole rings are approximately coplanar. In contrast, the oxidized cofactor in the B. megaterium enzyme appears to be in the dipyrromethanone form, in which the C atom at the bridging α-position of the outer pyrrole ring is very clearly in a tetrahedral configuration. It is suggested that the pink colour of the freshly purified protein is owing to the presence of the dipyrromethene form of the cofactor which, in the structure reported here, adopts the same conformation as the fully reduced dipyrromethane form.
Assuntos
Bacillus megaterium/enzimologia , Hidroximetilbilano Sintase/química , Porfobilinogênio/análogos & derivados , Sequência de Aminoácidos , Bacillus megaterium/metabolismo , Cristalização , Cristalografia por Raios X , Hidroximetilbilano Sintase/metabolismo , Dados de Sequência Molecular , Oxirredução , Porfobilinogênio/química , Porfobilinogênio/metabolismoRESUMO
The enzyme 2,4'-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2,4'-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C-C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3â kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X-ray structure of a DAD enzyme from the Gram-negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2â Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active-site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α-hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in the predominantly hydrophobic active-site pocket where it undergoes peroxide radical-mediated heterolysis.
Assuntos
Alcaligenes/enzimologia , Dioxigenases/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de AminoácidosRESUMO
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses a key early step of the haem- and chlorophyll-biosynthesis pathways in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The active site possesses an unusual dipyrromethane cofactor which is extended during the reaction by the sequential addition of the four substrate molecules. The cofactor is linked covalently to the enzyme through a thioether bridge to the invariant Cys254. Until recently, structural data have only been available for the Escherichia coli and human forms of the enzyme. The expression of a codon-optimized gene for PBGD from Arabidopsis thaliana (thale cress) has permitted for the first time the X-ray analysis of the enzyme from a higher plant species at 1.45â Å resolution. The A. thaliana structure differs appreciably from the E. coli and human forms of the enzyme in that the active site is shielded by an extensive well defined loop region (residues 60-70) formed by highly conserved residues. This loop is completely disordered and uncharacterized in the E. coli and human PBGD structures. The new structure establishes that the dipyrromethane cofactor of the enzyme has become oxidized to the dipyrromethenone form, with both pyrrole groups approximately coplanar. Modelling of an intermediate of the elongation process into the active site suggests that the interactions observed between the two pyrrole rings of the cofactor and the active-site residues are highly specific and are most likely to represent the catalytically relevant binding mode. During the elongation cycle, it is thought that domain movements cause the bound cofactor and polypyrrole intermediates to move past the catalytic machinery in a stepwise manner, thus permitting the binding of additional substrate moieties and completion of the tetrapyrrole product. Such a model would allow the condensation reactions to be driven by the extensive interactions that are observed between the enzyme and the dipyrromethane cofactor, coupled with acid-base catalysis provided by the invariant aspartate residue Asp95.
Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Domínio Catalítico , Hidroximetilbilano Sintase/química , Tetrapirróis/química , Apoenzimas/química , Cristalografia por Raios X , Ligação ProteicaRESUMO
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor which is covalently linked by a thioether bridge to an invariant cysteine residue. Expression in Escherichia coli of a His-tagged form of Bacillus megaterium PBGD permitted the crystallization and preliminary X-ray analysis of the enzyme from this species at high resolution.
Assuntos
Bacillus megaterium/enzimologia , Proteínas de Bactérias/química , Hidroximetilbilano Sintase/química , Tetrapirróis/química , Cristalização , Cristalografia por Raios XRESUMO
The analysis reported here describes detailed structural studies of endothiapepsin (the aspartic proteinase from Endothia parasitica), with and without bound inhibitors, and human pepsin 3b. Comparison of multiple crystal structures of members of the aspartic proteinase family has revealed small but significant differences in domain orientation in different crystal forms. In this paper, it is shown that these differences in domain orientation do not necessarily correlate with the presence or absence of bound inhibitors, but appear to stem at least partly from crystal contacts mediated by sulfate ions. However, since the same inherent flexibility of the structure is observed for other enzymes in this family such as human pepsin, the native structure of which is also reported here, the observed domain movements may well have implications for the mechanism of catalysis.
Assuntos
Ácido Aspártico Proteases/química , Ascomicetos/enzimologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Proteases/antagonistas & inibidores , Cristalografia por Raios X , Humanos , Modelos Moleculares , Pepsina A/antagonistas & inibidores , Pepsina A/química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , Estrutura Terciária de ProteínaRESUMO
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses a key early step of the haem-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor which is covalently linked by a thioether bridge to an invariant cysteine residue. Since PBGD catalyses a reaction which is common to the biosynthesis of both haem and chlorophyll, structural studies of a plant PBGD enzyme offer great potential for the discovery of novel herbicides. Until recently, structural data have only been available for the Escherichia coli and human forms of the enzyme. Expression in E. coli of a codon-optimized gene for Arabidopsis thaliana PBGD has permitted for the first time the crystallization and preliminary X-ray analysis of the enzyme from a plant species at high resolution.
Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Hidroximetilbilano Sintase/química , Tetrapirróis/biossíntese , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroximetilbilano Sintase/metabolismo , Modelos Moleculares , Porfobilinogênio/química , Porfobilinogênio/metabolismo , Conformação Proteica , Tetrapirróis/químicaRESUMO
BACKGROUND AND PURPOSE: Embolization of the middle meningeal artery for treatment of refractory or recurrent chronic subdural hematomas has gained momentum during the past few years. Little has been reported on the use of the n-BCA liquid embolic system for middle meningeal artery embolization. We present the technical feasibility of using diluted n-BCA for middle meningeal artery embolization. MATERIALS AND METHODS: We sought to examine the safety and technical feasibility of the diluted n-BCA liquid embolic system for middle meningeal artery embolization. Patients with chronic refractory or recurrent subdural hematomas were prospectively enrolled from September 2019 to June 2020. The primary outcome was the safety and technical feasibility of the use of diluted n-BCA for embolization of the middle meningeal artery. The secondary end point was the efficacy in reducing hematoma volume. RESULTS: A total of 16 patients were prospectively enrolled. Concomitant burr-hole craniotomies were performed in 12 of the 16 patients. Two patients required an operation following middle meningeal artery embolization for persistent symptoms. The primary end point was met in 100% of cases in which there were no intra- or postprocedural complications. Distal penetration of the middle meningeal artery branches was achieved in all the enrolled cases. A 7-day post-middle meningeal artery embolization follow-up head CT demonstrated improvement (>50% reduction in subdural hematoma volume) in 9/15 (60%) patients, with 6/15 (40%) showing an unchanged or stable subdural hematoma. At day 21, available CT scans demonstrated substantial further improvement (>75% reduction in subdural hematoma volume). CONCLUSIONS: Embolization of the middle meningeal artery using diluted n-BCA and ethiodized oil (1:6) is safe and feasible from a technical standpoint. The use of a dextrose 5% bolus improves distal penetration of the glue.
Assuntos
Adesivos/uso terapêutico , Embolização Terapêutica/métodos , Hematoma Subdural Crônico/terapia , Artérias Meníngeas , Idoso , Estudos de Viabilidade , Glucose/uso terapêutico , Humanos , Masculino , Estudos ProspectivosRESUMO
Burkholderia pseudomallei, the causative agent of melioidosis, possesses a type III protein secretion apparatus that is similar to those found in Salmonella and Shigella. A major function of these secretion systems is to inject virulence-associated proteins into target cells of the host organism. The bipD gene of B. pseudomallei encodes a secreted virulence factor that is similar in sequence and is most likely to be functionally analogous to IpaD from Shigella and SipD from Salmonella. Proteins in this family are thought to act as extracellular chaperones at the tip of the secretion needle to help the hydrophobic translocator proteins enter the target cell membrane, where they form a pore and may also link the translocon pore with the secretion needle. BipD has been crystallized in a monoclinic crystal form that diffracted X-rays to 1.5 A resolution and the structure was refined to an R factor of 16.1% and an Rfree of 19.8% at this resolution. The putative dimer interface that was observed in previous crystal structures was retained and a larger surface area was buried in the new crystal form.
Assuntos
Proteínas de Bactérias/química , Burkholderia pseudomallei/química , Proteínas de Membrana/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Terciária de ProteínaRESUMO
Noroviruses are the predominant cause of human epidemic nonbacterial gastroenteritis. Viral replication requires a cysteine protease that cleaves a 200â kDa viral polyprotein into its constituent functional parts. Here, the crystallization of the recombinant protease from the Southampton norovirus is described. Whilst the native crystals were found to diffract only to medium resolution (2.9â Å), cocrystals of an inhibitor complex diffracted X-rays to 1.7â Å resolution. The polypeptide inhibitor (Ac-EFQLQ-propenyl ethyl ester) possesses an amino-acid sequence designed to match the substrate specificity of the enzyme, but was synthesized with a reactive Michael acceptor group at the C-terminal end.
Assuntos
Endopeptidases/química , Norovirus/enzimologia , Inibidores de Proteases/química , Domínios e Motivos de Interação entre Proteínas , Cristalização , Cristalografia por Raios X , Endopeptidases/metabolismo , Cinética , Inibidores de Proteases/metabolismoRESUMO
The X-ray structure of the holo-form of l-threonine dehydrogenase (TDH) from Thermococcus kodakaraensis (TkTDH) has been determined at 2.4A resolution. TDH catalyses the NAD(+)-dependent oxidation of l-threonine to 2-amino-3-ketobutyrate, and is one of the first enzymes in this family to be solved by X-ray crystallography. The enzyme is a homo-tetramer, each monomer consisting of 350 amino acids that form two domains; a catalytic domain and a nicotinamide co-factor (NAD(+))-binding domain, which contains an alpha/beta Rossmann fold motif. An extended twelve-stranded beta-sheet is formed by the association of pairs of monomers in the tetramer. TkTDH shows strong overall structural similarity to TDHs from thermophiles and alcohol dehydrogenases (ADH) from lower life forms, despite low sequence homology, exhibiting the same overall fold of the monomer and assembly of the tetramer. The structure reveals the binding site of the essential co-factor NAD(+) which is present in all subunits. Docking studies suggest a mode of interaction of TDH with 2-amino-3-ketobutyrate CoA ligase, the subsequent enzyme in the pathway for conversion of threonine to glycine. TDH is known to form a stable functional complex with 2-amino-3-ketobutyrate ligase, most probably to shield an unstable intermediate.
Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Thermococcus/enzimologia , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Cetoácidos/metabolismo , Dados de Sequência Molecular , NAD/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de AminoácidosRESUMO
Individual isoforms of the protein kinase C (PKC) family of kinases may have assumed distinct responsibilities for the control of complex and diverse cellular functions. In this study, we show that an isoform specific interaction between PKC epsilon and filamentous actin may serve as a necessary prelude to the enhancement of glutamate exocytosis from nerve terminals. Using a combination of cosedimentation, overlay, and direct binding assays, we demonstrate that filamentous actin is a principal anchoring protein for PKC epsilon within intact nerve endings. The unusual stability and direct nature of this physical interaction indicate that actin filaments represent a new class of PKC-binding protein. The binding of PKC epsilon to actin required that the kinase be activated, presumably to expose a cryptic binding site that we have identified and shown to be located between the first and second cysteine-rich regions within the regulatory domain of only this individual isoform of PKC. Arachidonic acid (AA) synergistically interacted with diacylglycerol to stimulate actin binding to PKC epsilon. Once established, this protein-protein interaction securely anchored PKC epsilon to the cytoskeletal matrix while also serving as a chaperone that maintained the kinase in a catalytically active conformation. Thus, actin appears to be a bifunctional anchoring protein that is specific for the PKC epsilon isoform. The assembly of this isoform-specific signaling complex appears to play a primary role in the PKC-dependent facilitation of glutamate exocytosis.
Assuntos
Actinas/metabolismo , Exocitose , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Sinapses/fisiologia , Sequência de Aminoácidos , Animais , Ácido Araquidônico/farmacologia , Sítios de Ligação , Cálcio/metabolismo , Citoesqueleto/enzimologia , Diglicerídeos/farmacologia , Sinergismo Farmacológico , Glutamatos , Cobaias , Isoenzimas/isolamento & purificação , Masculino , Dados de Sequência Molecular , Dibutirato de 12,13-Forbol/farmacologia , Fosfatidilserinas/metabolismo , Terminações Pré-Sinápticas/química , Ligação Proteica/efeitos dos fármacos , Proteína Quinase C/isolamento & purificação , Proteína Quinase C-alfa , Proteína Quinase C-delta , Proteína Quinase C-épsilon , Ratos , Ratos Sprague-Dawley , Solubilidade , Sinapses/enzimologiaRESUMO
A digitonin-solubilized cellulose synthase was prepared from Acetobacter xylinum. When this enzyme was incubated under conditions known to lead to active synthesis of 1,4-beta-D-glucan polymer (cellulose), electron microscopy revealed that clusters of fibrils were assembled within minutes. Individual fibrils are 17 +/- 2 angstroms in diameter. Evidence that the fibrils were freshly synthesized and cellulosic in nature was their incorporation of the tritium from UDP-[(3)H]glucose (UDP, uridine 5'-diphosphate), their binding of gold-labeled cellobiohydrolase, and an electron diffraction pattern with 004, 200, and 012 reflections (characteristic of cellulose synthesized in vivo) but missing 110 and 110 reflections. The small size of the fibrils is atypical of native A. xylinum cellulose microfibrils. The fibrils synthesized in vitro resemble, in morphology and size, the fibrillar cellulose produced when A. xylinum is cultured in the presence of agents that interfere with the normal process of crystallization of the microfibrils. The solubilized enzyme unit may therefore be producing a basic fibrillar structure that, in vivo, interacts laterally with other fibrils to produce native cellulose microfibrils.
RESUMO
In mammals and yeast, 5-aminolaevulinic acid dehydratase is a zinc-dependent enzyme that catalyses the synthesis of porphobilinogen-the pyrrole building block that is incorporated into all modified tetrapyrroles, including haem, chlorophyll and vitamin B12. The X-ray structure of this enzyme reveals how substitution of the catalytically important zinc ion by lead inactivates the enzyme and causes a form of pseudo-porphyria.
Assuntos
Heme/biossíntese , Intoxicação por Chumbo/metabolismo , Sintase do Porfobilinogênio/metabolismo , Animais , Humanos , Chumbo/metabolismo , Modelos Químicos , Modelos Moleculares , Sintase do Porfobilinogênio/química , Conformação ProteicaRESUMO
The enzyme L-threonine dehydrogenase catalyses the NAD(+)-dependent conversion of L-threonine to 2-amino-3-ketobutyrate, which is the first reaction of a two-step biochemical pathway involved in the metabolism of threonine to glycine. Here, the crystallization and preliminary crystallographic analysis of L-threonine dehydrogenase (Tk-TDH) from the hyperthermophilic organism Thermococcus kodakaraensis KOD1 is reported. This threonine dehydrogenase consists of 350 amino acids, with a molecular weight of 38 kDa, and was prepared using an Escherichia coli expression system. The purified native protein was crystallized using the hanging-drop vapour-diffusion method and crystals grew in the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = b = 124.5, c = 271.1 A. Diffraction data were collected to 2.6 A resolution and preliminary analysis indicates that there are four molecules in the asymmetric unit of the crystal.
Assuntos
Oxirredutases do Álcool/química , Proteínas Arqueais/química , Thermococcus/enzimologia , Oxirredutases do Álcool/metabolismo , Proteínas Arqueais/fisiologia , Temperatura Baixa , Cristalização , Cristalografia por Raios X , Estabilidade Enzimática/fisiologia , Concentração de Íons de HidrogênioRESUMO
Simulation for medical and healthcare applications, although still in a relatively nascent stage of development, already has a history that can inform the process of further research and dissemination. The development of mannequin simulators used for education, training, and research is reviewed, tracing the motivations, evolution to commercial availability, and efforts toward assessment of efficacy of those for teaching cardiopulmonary resuscitation, cardiology skills, anaesthesia clinical skills, and crisis management. A brief overview of procedural simulators and part-task trainers is also presented, contrasting the two domains and suggesting that a thorough history of the 20+ types of simulator technologies would provide a useful overview and perspective. There has been relatively little cross fertilisation of ideas and methods between the two simulator domains. Enhanced interaction between investigators and integration of simulation technologies would be beneficial for the dissemination of the concepts and their applications.
Assuntos
Medicina Clínica/educação , Educação Médica/tendências , Manequins , Materiais de Ensino , Medicina Clínica/tendências , HumanosRESUMO
The three-dimensional structure of the neuronal calcium-sensor protein calexcitin from Loligo pealei has been determined by X-ray analysis at a resolution of 1.8A. Calexcitin is up-regulated following Pavlovian conditioning and has been shown to regulate potassium channels and the ryanodine receptor. Thus, calexcitin is implicated in neuronal excitation and plasticity. The overall structure is predominantly helical and compact with a pronounced hydrophobic core between the N and C-terminal domains of the molecule. The structure consists of four EF-hand motifs although only the first three EF hands are involved in binding calcium ions; the C-terminal EF-hand lacks the amino acids required for calcium binding. The overall structure is quite similar to that of the sarcoplasmic calcium-binding protein from Amphioxus although the sequence identity is very low at 31%. The structure shows that the two amino acids of calexcitin phosphorylated by protein kinase C are close to the domain interface in three dimensions and thus phosphorylation is likely to regulate the opening of the domains that is probably required for binding to target proteins. There is evidence that calexcitin is a GTPase and the residues, which have been implicated by mutagenesis in its GTPase activity, are in a short but highly conserved region of 3(10) helix close to the C terminus. This helix resides in a large loop that is partly sandwiched between the N and C-terminal domains suggesting that GTP binding may also require or may cause domain opening. The structure possesses a pronounced electropositive crevice in the vicinity of the 3(10) helix, that might provide an initial docking site for the triphosphate group of GTP. These findings elucidate a number of the reported functions of calexcitin with implications for neuronal signalling.
Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao GTP/química , Aprendizagem/fisiologia , Loligo/química , Memória/fisiologia , Conformação Proteica , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Cristalografia por Raios X , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Neurônios/metabolismo , Selenometionina/química , Alinhamento de SequênciaRESUMO
Burkoldheria pseudomallei is a Gram-negative bacterium that possesses a protein secretion system similar to those found in Salmonella and Shigella. Recent work has indicated that the protein encoded by the BipD gene of B. pseudomallei is an important secreted virulence factor. BipD is similar in sequence to IpaD from Shigella and SipD from Salmonella and is therefore likely to be a translocator protein in the type-III secretion system of B. pseudomallei. The crystal structure of BipD has been solved at a resolution of 2.1 A revealing the detailed tertiary fold of the molecule. The overall structure is appreciably extended and consists of a bundle of antiparallel alpha-helical segments with two small beta-sheet regions. The longest helices of the molecule form a four-helix bundle and most of the remaining secondary structure elements (three helices and two three-stranded beta-sheets) are formed by the region linking the last two helices of the four-helix bundle. The structure suggests that the biologically active form of the molecule may be a dimer formed by contacts involving the C-terminal alpha-helix, which is the most strongly conserved part of the protein. Comparison of the structure of BipD with immunological and other data for IpaD indicates that the C-terminal alpha-helix is also involved in contacts with other proteins that form the translocon.
Assuntos
Burkholderia pseudomallei/química , Burkholderia pseudomallei/fisiologia , Fatores de Virulência/química , Fatores de Virulência/fisiologia , Sequência de Aminoácidos , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Cristalografia por Raios X , Dados de Sequência Molecular , Fatores de Virulência/genéticaRESUMO
The development of nitrogen-fixing nodules is induced on the roots of legume host plants by Rhizobium bacteria. We employed a novel strategy to probe the underlying mechanism of nodule morphogenesis in alfalfa roots using pTZS, a broad host range plasmid carrying a constitutive trans-zeatin secretion (tzs) gene from Agrobacterium tumefaciens T37. This plasmid suppressed the Nod- phenotype of Rhizobium nodulation mutants such that mutants harboring pTZS stimulated the formation of nodulelike structures. Alfalfa roots formed more or fewer of these nodules according to both the nitrogen content of the environment and the position along the root at which the pTZS+ bacteria were applied, which parallels the physiological and developmental regulation of true Rhizobium nodule formation. This plasmid also conferred on Escherichia coli cells the ability to induce root cortical cell mitoses. Both the pattern of induced cell divisions and the spatially restricted expression of an alfalfa nodule-specific marker gene (MsENOD2) in pTZS-induced nodules support the conclusion that localized cytokinin production produces a phenocopy of nodule morphogenesis.
RESUMO
Measurement of heart-girth (chest circumference) is commonly used to estimate dairy heifer body weight from previously derived equations or tables. In this experiment, variability of heart-girth measurements as they are taken in the field was analyzed to determine the standard deviation within a group of 26 Holstein heifers of various ages weighing 42-590 kg. Standard deviations were 2.19 cm among 26 observers and 2.74 cm within any one observer. Repeatability between two heart-girth measurements by an individual observer on the same animal using a blind heart-girth tape was >0.99. Correlation coefficients between two measurements by different observers using blind measuring tapes on the same animal also were >0.99, with 99% of total differences due to observer and heifer, indicating very little random variation. A second part of this study was the validation of the most recently derived equation to calculate body weight from heart-girth. The equation was validated with data sets from universities across the United States and field data collected specifically for this study. Experimental and field data comprised of heart-girth and body weight measurements upheld the previously derived equation and support its continued use. These results allow more precise interpretation of heart-girth data collected from field studies with Holstein dairy heifers and provide more complete validation of existing body weight-prediction equations.