Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669239

RESUMO

Irregular inflammatory responses are a major contributor to tissue dysfunction and inefficient repair. Skin has proven to be a powerful model to study mechanisms that regulate inflammation. In particular, skin wound healing is dependent on a rapid, robust immune response and subsequent dampening of inflammatory signaling. While injury-induced inflammation has historically been attributed to keratinocytes and immune cells, a vast body of evidence supports the ability of non-immune cells to coordinate inflammation in numerous tissues and diseases. In this review, we concentrate on the active participation of tissue-resident adipocytes and fibroblasts in pro-inflammatory signaling after injury, and how altered cellular communication from these cells can contribute to irregular inflammation associated with aberrant wound healing. Furthering our understanding of how tissue-resident mesenchymal cells contribute to inflammation will likely reveal new targets that can be manipulated to regulate inflammation and repair.


Assuntos
Adipócitos Brancos/imunologia , Derme/citologia , Derme/lesões , Fibroblastos/imunologia , Cicatrização/imunologia , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Comunicação Celular/imunologia , Polaridade Celular/imunologia , Citocinas/metabolismo , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/imunologia
2.
Prostate ; 79(11): 1256-1266, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31212370

RESUMO

BACKGROUND: SULT2B1b (sulfotransferase family cytosolic 2B member 1b) catalyzes the sulfate conjugation of substrates such as cholesterol and oxysterols. Our laboratory has previously shown that SULT2B1b inhibition modulates androgen receptor signaling and induces apoptosis in prostate cancer cells. However, the functions of SULT2B1b in the prostate remain poorly understood. METHODS: We characterized the expression pattern of SULT2B1b in human benign prostate hyperplasia (BPH) as well as prostate cancer to determine the relationship between SULT2B1b and prostate diseases, using immunohistochemistry, immunofluorescence staining, immunoblot, and real-time polymerase chain reaction. RESULTS: SULT2B1b was strongly detected in the prostate epithelium but was absent in the stroma. Significantly lower SULT2B1b was found in primary cancer cells compared with adjacent normal epithelial cells. SULT2B1b further decreased in metastatic cancer cells. Most interestingly, we found, for the first time, that SULT2B1b was much more concentrated in the luminal layer than in the basal layer in both normal prostate and BPH samples. The stronger presence of SULT2B1b in luminal epithelial cells was confirmed by costaining with luminal and basal markers and in sorted paired luminal and basal cells. SULT2B1b expression was induced with prostate organoid differentiation. CONCLUSIONS: SULT2B1b inversely correlates with prostate cancer status, with the highest level in the normal epithelium and lowest in the advanced metastatic prostate cancer. Furthermore, SULT2B1b is mostly located within the luminal layer of the prostate epithelium, suggesting that it may be implicated in luminal differentiation.


Assuntos
Adenocarcinoma/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/metabolismo , Sulfotransferases/metabolismo , Animais , Epitélio/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Análise Serial de Tecidos
3.
Cell Rep ; 43(6): 114288, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38814782

RESUMO

Lipids have emerged as potent regulators of immune cell function. In the skin, adipocyte lipolysis increases the local pool of free fatty acids and is essential for coordinating early macrophage inflammation following injury. Here, we investigate G-protein-coupled receptor 84 (GPR84), a medium-chain fatty acid (MCFA) receptor, for its potential to propagate pro-inflammatory signaling after skin injury. GPR84 signaling was identified as a key component of regulating myeloid cell numbers and subsequent tissue repair through in vivo administration of a pharmacological antagonist and the MCFA decanoic acid. We found that impaired injury-induced dermal adipocyte lipolysis is a hallmark of diabetes, and lipidomic analysis demonstrated that MCFAs are significantly reduced in diabetic murine wounds. Furthermore, local administration of decanoic acid rescued myeloid cell numbers and tissue repair during diabetic wound healing. Thus, GPR84 is a readily targetable lipid signaling pathway for manipulating injury-induced tissue inflammation with beneficial effects on acute diabetic healing.


Assuntos
Diabetes Mellitus Experimental , Inflamação , Receptores Acoplados a Proteínas G , Pele , Cicatrização , Animais , Receptores Acoplados a Proteínas G/metabolismo , Pele/patologia , Pele/metabolismo , Pele/lesões , Camundongos , Inflamação/patologia , Inflamação/metabolismo , Cicatrização/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Camundongos Endogâmicos C57BL , Masculino , Transdução de Sinais , Ácidos Decanoicos/farmacologia , Lipólise/efeitos dos fármacos , Humanos , Adipócitos/metabolismo , Células Mieloides/metabolismo
4.
Res Sq ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168414

RESUMO

The majority of patients with benign prostate hyperplasia (BPH) exhibit chronic prostate inflammation and the extent of inflammation correlates with the severity of symptoms. How inflammation contributes to prostate enlargement and/or BPH symptoms and the underlying mechanisms are not clearly understood. We established a unique mouse model Prostate Ovalbumin Expressing Transgenic 3 (POET3) that mimics chronic non-bacterial prostatitis in men to study the role of inflammation in prostate hyperplasia. After the injection of ovalbumin peptide-specific T cells, POET3 prostates exhibited an influx of inflammatory cells and an increase in pro-inflammatory cytokines that led to epithelial and stromal hyperplasia. We have previously demonstrated with the POET3 model that inflammation expands the basal prostate stem cell (bPSC) population and promotes bPSC differentiation in organoid cultures. In this study, we investigated the mechanisms underlying the impact of inflammation on bPSC. We found that AR activity was enhanced in inflamed bPSC and was essential for bPSC differentiation in organoid cultures. Most importantly, we identified, for the first time, interleukin 1 receptor antagonist (IL-1RA) as a key regulator of AR in basal stem cells. IL-1RA was one of the top genes upregulated by inflammation and inhibition of IL-1RA abrogated the enhanced AR nuclear accumulation and activity in organoids derived from inflamed bPSC. The mirroring effects of IL-1RA recombinant protein and IL-1α neutralizing antibody suggest that IL-1RA may function by antagonizing IL-1α inhibition of AR expression. Furthermore, we established a lineage tracing model to follow bPSC during inflammation and under castrate conditions. We found that inflammation induced bPSC proliferation and differentiation into luminal cells even under castrate conditions, indicating that AR activation driven by inflammation in bPSC is sufficient for their proliferation and differentiation under androgen-deprived conditions. However, proliferation of the differentiated bPSC in the luminal layer significantly diminished with castration, suggesting inflammation may not maintain AR activity in stromal cells, as stromal cells deprived of androgen after castration could no longer provide paracrine growth factors essential for luminal proliferation. Taken together, we have discovered novel mechanisms through which inflammation modulates AR signaling in bPSC and induces bPSC luminal differentiation that contributes to prostate hyperplasia.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa