Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
EMBO J ; 42(23): e115008, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37964598

RESUMO

The main goals and challenges for the life science communities in the Open Science framework are to increase reuse and sustainability of data resources, software tools, and workflows, especially in large-scale data-driven research and computational analyses. Here, we present key findings, procedures, effective measures and recommendations for generating and establishing sustainable life science resources based on the collaborative, cross-disciplinary work done within the EOSC-Life (European Open Science Cloud for Life Sciences) consortium. Bringing together 13 European life science research infrastructures, it has laid the foundation for an open, digital space to support biological and medical research. Using lessons learned from 27 selected projects, we describe the organisational, technical, financial and legal/ethical challenges that represent the main barriers to sustainability in the life sciences. We show how EOSC-Life provides a model for sustainable data management according to FAIR (findability, accessibility, interoperability, and reusability) principles, including solutions for sensitive- and industry-related resources, by means of cross-disciplinary training and best practices sharing. Finally, we illustrate how data harmonisation and collaborative work facilitate interoperability of tools, data, solutions and lead to a better understanding of concepts, semantics and functionalities in the life sciences.


Assuntos
Disciplinas das Ciências Biológicas , Pesquisa Biomédica , Software , Fluxo de Trabalho
2.
Plant Cell ; 34(10): 3844-3859, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35876813

RESUMO

The Arabidopsis thaliana GSK3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2) is a key negative regulator of brassinosteroid (BR) signaling and a hub for crosstalk with other signaling pathways. However, the mechanisms controlling BIN2 activity are not well understood. Here we performed a forward genetic screen for resistance to the plant-specific GSK3 inhibitor bikinin and discovered that a mutation in the ADENOSINE MONOPHOSPHATE DEAMINASE (AMPD)/EMBRYONIC FACTOR1 (FAC1) gene reduces the sensitivity of Arabidopsis seedlings to both bikinin and BRs. Further analyses revealed that AMPD modulates BIN2 activity by regulating its oligomerization in a hydrogen peroxide (H2O2)-dependent manner. Exogenous H2O2 induced the formation of BIN2 oligomers with a decreased kinase activity and an increased sensitivity to bikinin. By contrast, AMPD activity inhibition reduced the cytosolic reactive oxygen species (ROS) levels and the amount of BIN2 oligomers, correlating with the decreased sensitivity of Arabidopsis plants to bikinin and BRs. Furthermore, we showed that BIN2 phosphorylates AMPD to possibly alter its function. Our results uncover the existence of an H2O2 homeostasis-mediated regulation loop between AMPD and BIN2 that fine-tunes the BIN2 kinase activity to control plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Monofosfato de Adenosina/metabolismo , Aminopiridinas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Regulação da Expressão Gênica de Plantas , Quinase 3 da Glicogênio Sintase/genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Succinatos
3.
PLoS Comput Biol ; 19(1): e1010752, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622853

RESUMO

There is an ongoing explosion of scientific datasets being generated, brought on by recent technological advances in many areas of the natural sciences. As a result, the life sciences have become increasingly computational in nature, and bioinformatics has taken on a central role in research studies. However, basic computational skills, data analysis, and stewardship are still rarely taught in life science educational programs, resulting in a skills gap in many of the researchers tasked with analysing these big datasets. In order to address this skills gap and empower researchers to perform their own data analyses, the Galaxy Training Network (GTN) has previously developed the Galaxy Training Platform (https://training.galaxyproject.org), an open access, community-driven framework for the collection of FAIR (Findable, Accessible, Interoperable, Reusable) training materials for data analysis utilizing the user-friendly Galaxy framework as its primary data analysis platform. Since its inception, this training platform has thrived, with the number of tutorials and contributors growing rapidly, and the range of topics extending beyond life sciences to include topics such as climatology, cheminformatics, and machine learning. While initially aimed at supporting researchers directly, the GTN framework has proven to be an invaluable resource for educators as well. We have focused our efforts in recent years on adding increased support for this growing community of instructors. New features have been added to facilitate the use of the materials in a classroom setting, simplifying the contribution flow for new materials, and have added a set of train-the-trainer lessons. Here, we present the latest developments in the GTN project, aimed at facilitating the use of the Galaxy Training materials by educators, and its usage in different learning environments.


Assuntos
Biologia Computacional , Software , Humanos , Biologia Computacional/métodos , Análise de Dados , Pesquisadores
4.
Nucleic Acids Res ; 50(D1): D1468-D1474, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34747486

RESUMO

PLAZA is a platform for comparative, evolutionary, and functional plant genomics. It makes a broad set of genomes, data types and analysis tools available to researchers through a user-friendly website, an API, and bulk downloads. In this latest release of the PLAZA platform, we are integrating a record number of 134 high-quality plant genomes, split up over two instances: PLAZA Dicots 5.0 and PLAZA Monocots 5.0. This number of genomes corresponds with a massive expansion in the number of available species when compared to PLAZA 4.0, which offered access to 71 species, a 89% overall increase. The PLAZA 5.0 release contains information for 5 882 730 genes, and offers pre-computed gene families and phylogenetic trees for 5 274 684 protein-coding genes. This latest release also comes with a set of new and updated features: a new BED import functionality for the workbench, improved interactive visualizations for functional enrichments and genome-wide mapping of gene sets, and a fully redesigned and extended API. Taken together, this new version offers extended support for plant biologists working on different families within the green plant lineage and provides an efficient and versatile toolbox for plant genomics. All PLAZA releases are accessible from the portal website: https://bioinformatics.psb.ugent.be/plaza/.


Assuntos
Evolução Biológica , Bases de Dados Genéticas , Plantas/classificação , Software , Genoma de Planta/genética , Genômica/normas , Anotação de Sequência Molecular , Família Multigênica/genética , Filogenia , Plantas/genética
5.
Bioinformatics ; 38(11): 3141-3142, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35380605

RESUMO

SUMMARY: To advance biomedical research, increasingly large amounts of complex data need to be discovered and integrated. This requires syntactic and semantic validation to ensure shared understanding of relevant entities. This article describes the ELIXIR biovalidator, which extends the syntactic validation of the widely used AJV library with ontology-based validation of JSON documents. AVAILABILITY AND IMPLEMENTATION: Source code: https://github.com/elixir-europe/biovalidator, Release: v1.9.1, License: Apache License 2.0, Deployed at: https://www.ebi.ac.uk/biosamples/schema/validator/validate. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Disciplinas das Ciências Biológicas , Metadados , Semântica , Software
6.
Bioinformatics ; 37(21): 3983-3985, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34096994

RESUMO

SUMMARY: Many aspects of the global response to the COVID-19 pandemic are enabled by the fast and open publication of SARS-CoV-2 genetic sequence data. The European Nucleotide Archive (ENA) is the European recommended open repository for genetic sequences. In this work, we present a tool for submitting raw sequencing reads of SARS-CoV-2 to ENA. The tool features a single-step submission process, a graphical user interface, tabular-formatted metadata and the possibility to remove human reads prior to submission. A Galaxy wrap of the tool allows users with little or no bioinformatics knowledge to do bulk sequencing read submissions. The tool is also packed in a Docker container to ease deployment. AVAILABILITY AND IMPLEMENTATION: CLI ENA upload tool is available at github.com/usegalaxy-eu/ena-upload-cli (DOI 10.5281/zenodo.4537621); Galaxy ENA upload tool at toolshed.g2.bx.psu.edu/view/iuc/ena_upload/382518f24d6d and github.com/galaxyproject/tools-iuc/tree/master/tools/ena_upload (development); and ENA upload Galaxy container at github.com/ELIXIR-Belgium/ena-upload-container (DOI 10.5281/zenodo.4730785).


Assuntos
COVID-19 , Software , Humanos , SARS-CoV-2 , Nucleotídeos , Pandemias
7.
PLoS Pathog ; 16(8): e1008643, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32790776

RESUMO

The current state of much of the Wuhan pneumonia virus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) research shows a regrettable lack of data sharing and considerable analytical obfuscation. This impedes global research cooperation, which is essential for tackling public health emergencies and requires unimpeded access to data, analysis tools, and computational infrastructure. Here, we show that community efforts in developing open analytical software tools over the past 10 years, combined with national investments into scientific computational infrastructure, can overcome these deficiencies and provide an accessible platform for tackling global health emergencies in an open and transparent manner. Specifically, we use all SARS-CoV-2 genomic data available in the public domain so far to (1) underscore the importance of access to raw data and (2) demonstrate that existing community efforts in curation and deployment of biomedical software can reliably support rapid, reproducible research during global health crises. All our analyses are fully documented at https://github.com/galaxyproject/SARS-CoV-2.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Saúde Pública , Síndrome Respiratória Aguda Grave/virologia , COVID-19 , Análise de Dados , Humanos , Pandemias , SARS-CoV-2
8.
New Phytol ; 230(3): 972-987, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33475158

RESUMO

Condensins are best known for their role in shaping chromosomes. Other functions such as organizing interphase chromatin and transcriptional control have been reported in yeasts and animals, but little is known about their function in plants. To elucidate the specific composition of condensin complexes and the expression of CAP-D2 (condensin I) and CAP-D3 (condensin II), we performed biochemical analyses in Arabidopsis. The role of CAP-D3 in interphase chromatin organization and function was evaluated using cytogenetic and transcriptome analysis in cap-d3 T-DNA insertion mutants. CAP-D2 and CAP-D3 are highly expressed in mitotically active tissues. In silico and pull-down experiments indicate that both CAP-D proteins interact with the other condensin I and II subunits. In cap-d3 mutants, an association of heterochromatic sequences occurs, but the nuclear size and the general histone and DNA methylation patterns remain unchanged. Also, CAP-D3 influences the expression of genes affecting the response to water, chemicals, and stress. The expression and composition of the condensin complexes in Arabidopsis are similar to those in other higher eukaryotes. We propose a model for the CAP-D3 function during interphase in which CAP-D3 localizes in euchromatin loops to stiffen them and consequently separates centromeric regions and 45S rDNA repeats.


Assuntos
Arabidopsis , Cromatina , Adenosina Trifosfatases/genética , Animais , Arabidopsis/genética , Proteínas de Ligação a DNA , Interfase , Complexos Multiproteicos
9.
Plant J ; 97(5): 805-824, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30748050

RESUMO

The phytohormone cytokinin has been shown to affect many aspects of plant development ranging from the regulation of the shoot apical meristem to leaf senescence. However, some studies have reported contradictory effects of cytokinin on leaf physiology. Therefore cytokinin treatments cause both chlorosis and increased greening and both lead to decrease or increase in cell size. To elucidate this multifaceted role of cytokinin in leaf development, we have employed a system of temporal controls over the cytokinin pool and investigated the consequences of modulated cytokinin levels in the third leaf of Arabidopsis. We show that, at the cell proliferation phase, cytokinin is needed to maintain cell proliferation by blocking the transition to cell expansion and the onset of photosynthesis. Transcriptome profiling revealed regulation by cytokinin of a gene suite previously shown to affect cell proliferation and expansion and thereby a molecular mechanism by which cytokinin modulates a molecular network underlying the cellular responses. During the cell expansion phase, cytokinin stimulates cell expansion and differentiation. Consequently, a cytokinin excess at the cell expansion phase results in an increased leaf and rosette size fueled by higher cell expansion rate, yielding higher shoot biomass. Proteome profiling revealed the stimulation of primary metabolism by cytokinin, in line with an increased sugar content that is expected to increase turgor pressure, representing the driving force of cell expansion. Therefore, the developmental timing of cytokinin content fluctuations, together with a tight control of primary metabolism, is a key factor mediating transitions from cell proliferation to cell expansion in leaves.


Assuntos
Arabidopsis/fisiologia , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteoma , Transdução de Sinais , Transcriptoma , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Crescimento Celular , Proliferação de Células , Ontologia Genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia
10.
New Phytol ; 227(1): 260-273, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32171029

RESUMO

Enabling data reuse and knowledge discovery is increasingly critical in modern science, and requires an effort towards standardising data publication practices. This is particularly challenging in the plant phenotyping domain, due to its complexity and heterogeneity. We have produced the MIAPPE 1.1 release, which enhances the existing MIAPPE standard in coverage, to support perennial plants, in structure, through an explicit data model, and in clarity, through definitions and examples. We evaluated MIAPPE 1.1 by using it to express several heterogeneous phenotyping experiments in a range of different formats, to demonstrate its applicability and the interoperability between the various implementations. Furthermore, the extended coverage is demonstrated by the fact that one of the datasets could not have been described under MIAPPE 1.0. MIAPPE 1.1 marks a major step towards enabling plant phenotyping data reusability, thanks to its extended coverage, and especially the formalisation of its data model, which facilitates its implementation in different formats. Community feedback has been critical to this development, and will be a key part of ensuring adoption of the standard.


Assuntos
Fenômica , Plantas , Plantas/genética
11.
Nucleic Acids Res ; 46(D1): D1190-D1196, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29069403

RESUMO

PLAZA (https://bioinformatics.psb.ugent.be/plaza) is a plant-oriented online resource for comparative, evolutionary and functional genomics. The PLAZA platform consists of multiple independent instances focusing on different plant clades, while also providing access to a consistent set of reference species. Each PLAZA instance contains structural and functional gene annotations, gene family data and phylogenetic trees and detailed gene colinearity information. A user-friendly web interface makes the necessary tools and visualizations accessible, specific for each data type. Here we present PLAZA 4.0, the latest iteration of the PLAZA framework. This version consists of two new instances (Dicots 4.0 and Monocots 4.0) providing a large increase in newly available species, and offers access to updated and newly implemented tools and visualizations, helping users with the ever-increasing demands for complex and in-depth analyzes. The total number of species across both instances nearly doubles from 37 species in PLAZA 3.0 to 71 species in PLAZA 4.0, with a much broader coverage of crop species (e.g. wheat, palm oil) and species of evolutionary interest (e.g. spruce, Marchantia). The new PLAZA instances can also be accessed by a programming interface through a RESTful web service, thus allowing bioinformaticians to optimally leverage the power of the PLAZA platform.


Assuntos
Evolução Biológica , Genoma de Planta , Genômica , Plantas/genética , Produtos Agrícolas/genética , Bases de Dados Genéticas , Filogenia , Interface Usuário-Computador
12.
Nucleic Acids Res ; 46(D1): D586-D594, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29045755

RESUMO

Triterpenes constitute a large and important class of plant natural products with diverse structures and functions. Their biological roles range from membrane structural components over plant hormones to specialized plant defence compounds. Furthermore, triterpenes have great potential for a variety of commercial applications such as vaccine adjuvants, anti-cancer drugs, food supplements and agronomic agents. Their biosynthesis is carried out through complicated, branched pathways by multiple enzyme types that include oxidosqualene cyclases, cytochrome P450s, and UDP-glycosyltransferases. Given that the number of characterized triterpene biosynthesis enzymes has been growing fast recently, the need for a database specifically focusing on triterpene enzymology became eminent. Here, we present the TriForC database (http://bioinformatics.psb.ugent.be/triforc/), encompassing a comprehensive catalogue of triterpene biosynthesis enzymes. This highly interlinked database serves as a user-friendly access point to versatile data sets of enzyme and compound features, enabling the scanning of a complete catalogue of experimentally validated triterpene enzymes, their substrates and products, as well as the pathways they constitute in various plant species. The database can be accessed by direct browsing or through convenient search tools including keyword, BLAST, plant species and substructure options. This database will facilitate gene mining and creating genetic toolboxes for triterpene synthetic biology.


Assuntos
Bases de Dados Factuais , Plantas/metabolismo , Triterpenos/metabolismo , Produtos Biológicos/metabolismo , Vias Biossintéticas , Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Enzimas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Ferramenta de Busca , Especificidade por Substrato , Biologia de Sistemas , Triterpenos/química
13.
Plant Cell ; 28(10): 2417-2434, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27729396

RESUMO

Plant growth and crop yield are negatively affected by a reduction in water availability. However, a clear understanding of how growth is regulated under nonlethal drought conditions is lacking. Recent advances in genomics, phenomics, and transcriptomics allow in-depth analysis of natural variation. In this study, we conducted a detailed screening of leaf growth responses to mild drought in a worldwide collection of Arabidopsis thaliana accessions. The genetic architecture of the growth responses upon mild drought was investigated by subjecting the different leaf growth phenotypes to genome-wide association mapping and by characterizing the transcriptome of young developing leaves. Although no major effect locus was found to be associated with growth in mild drought, the transcriptome analysis delivered further insight into the natural variation of transcriptional responses to mild drought in a specific tissue. Coexpression analysis indicated the presence of gene clusters that co-vary over different genetic backgrounds, among others a cluster of genes with important regulatory functions in the growth response to osmotic stress. It was found that the occurrence of a mild drought stress response in leaves can be inferred with high accuracy across accessions based on the expression profile of 283 genes. A genome-wide association study on the expression data revealed that trans regulation seems to be more important than cis regulation in the transcriptional response to environmental perturbations.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Secas , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Folhas de Planta/genética
14.
Plant Cell ; 28(1): 6-16, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26744219

RESUMO

Ubiquitination, the covalent binding of the small protein modifier ubiquitin to a target protein, is an important and frequently studied posttranslational protein modification. Multiple reports provide useful insights into the plant ubiquitinome, but mostly at the protein level without comprehensive site identification. Here, we implemented ubiquitin combined fractional diagonal chromatography (COFRADIC) for proteome-wide ubiquitination site mapping on Arabidopsis thaliana cell cultures. We identified 3009 sites on 1607 proteins, thereby greatly increasing the number of known ubiquitination sites in this model plant. Finally, The Ubiquitination Site tool (http://bioinformatics.psb.ugent.be/webtools/ubiquitin_viewer/) gives access to the obtained ubiquitination sites, not only to consult the ubiquitination status of a given protein, but also to conduct intricate experiments aiming to study the roles of specific ubiquitination events. Together with the antibodies recognizing the ubiquitin remnant motif, ubiquitin COFRADIC represents a powerful tool to resolve the ubiquitination maps of numerous cellular processes in plants.


Assuntos
Arabidopsis/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Alinhamento de Sequência , Ubiquitina/química , Ubiquitinação
15.
Plant Biotechnol J ; 16(2): 615-627, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28730636

RESUMO

Growth is characterized by the interplay between cell division and cell expansion, two processes that occur separated along the growth zone at the maize leaf. To gain further insight into the transition between cell division and cell expansion, conditions were investigated in which the position of this transition zone was positively or negatively affected. High levels of gibberellic acid (GA) in plants overexpressing the GA biosynthesis gene GA20-OXIDASE (GA20OX-1OE ) shifted the transition zone more distally, whereas mild drought, which is associated with lowered GA biosynthesis, resulted in a more basal positioning. However, the increased levels of GA in the GA20OX-1OE line were insufficient to convey tolerance to the mild drought treatment, indicating that another mechanism in addition to lowered GA levels is restricting growth during drought. Transcriptome analysis with high spatial resolution indicated that mild drought specifically induces a reprogramming of transcriptional regulation in the division zone. 'Leaf Growth Viewer' was developed as an online searchable tool containing the high-resolution data.


Assuntos
Secas , Giberelinas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Bioinformatics ; 33(18): 2946-2947, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28525531

RESUMO

MOTIVATION: Comparative and evolutionary studies utilize phylogenetic trees to analyze and visualize biological data. Recently, several web-based tools for the display, manipulation and annotation of phylogenetic trees, such as iTOL and Evolview, have released updates to be compatible with the latest web technologies. While those web tools operate an open server access model with a multitude of registered users, a feature-rich open source solution using current web technologies is not available. RESULTS: Here, we present an extension of the widely used PhyloXML standard with several new options to accommodate functional genomics or annotation datasets for advanced visualization. Furthermore, PhyD3 has been developed as a lightweight tool using the JavaScript library D3.js to achieve a state-of-the-art phylogenetic tree visualization in the web browser, with support for advanced annotations. The current implementation is open source, easily adaptable and easy to implement in third parties' web sites. AVAILABILITY AND IMPLEMENTATION: More information about PhyD3 itself, installation procedures and implementation links are available at http://phyd3.bits.vib.be and at http://github.com/vibbits/phyd3/ . CONTACT: klaas.vandepoele@ugent.vib.be or michiel.vanbel@ugent.vib.be. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica/métodos , Filogenia , Software , Internet , Análise de Sequência de DNA/métodos
17.
Plant Physiol ; 173(1): 703-714, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27879393

RESUMO

Although phytohormones such as gibberellins are essential for many conserved aspects of plant physiology and development, plants vary greatly in their responses to these regulatory compounds. Here, we use genetic perturbation of endogenous gibberellin levels to probe the extent of intraspecific variation in gibberellin responses in natural accessions of Arabidopsis (Arabidopsis thaliana). We find that these accessions vary greatly in their ability to buffer the effects of overexpression of GA20ox1, encoding a rate-limiting enzyme for gibberellin biosynthesis, with substantial differences in bioactive gibberellin concentrations as well as transcriptomes and growth trajectories. These findings demonstrate a surprising level of flexibility in the wiring of regulatory networks underlying hormone metabolism and signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Oxigenases de Função Mista/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Oxigenases de Função Mista/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
19.
Nucleic Acids Res ; 44(D1): D38-47, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538599

RESUMO

Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.


Assuntos
Biologia Computacional , Sistema de Registros , Curadoria de Dados , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa