Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 44(3): e2100263, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34984707

RESUMO

Herein, I discuss the enduring mystery of the receptor layout in the vertebrate olfactory system. Since the awarding of the 2004 Nobel Prize to Axel and Buck for their discovery of the gene family that encodes olfactory receptors, our field has enjoyed a golden era. Despite this Renaissance, an answer to one of the most fundamental questions for any sensory system-what is the anatomical logic of its receptor array?-eludes us, still, for olfaction! Indeed, the only widely debated hypothesis, finding its origins in the musing of another Nobel laureate Sir Edgar Adrian, has it that the vertebrate nose organizes its receptors according to the "sorptive" properties of their ligands. This idea, known as the "sorption" or "chromatography" hypothesis, enjoys considerable support despite being controversial. Here, I review the history of the hypothesis-its rises and falls-and discuss the latest data and future prospects for this perennial idea whose history I liken to the mythical Phoenix.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Cromatografia , Prêmio Nobel , Odorantes , Receptores Odorantes/genética , Olfato , Vertebrados
2.
Chem Senses ; 462021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103187

RESUMO

The effects of deprivation and enrichment on the electroolfactogram of mice were studied through the paradigms of unilateral naris occlusion and odor induction, respectively. Deprivation was shown to cause an increase in electroolfactogram amplitudes after 7 days. We also show that unilateral naris occlusion is not detrimental to the gross anatomical appearance or electroolfactogram of either the ipsilateral or contralateral olfactory epithelium even after year-long survival periods, consistent with our previous assumptions. Turning to induction, the increase in olfactory responses after a period of odor enrichment, could not be shown in CD-1 outbred mice for any odorant tried. However, consistent with classical studies, it was evident in C57BL/6J inbred mice, which are initially insensitive to isovaleric acid. As is the case for deprivation, enriching C57BL/6J mice with isovaleric acid causes an increase in their electroolfactogram response to this odorant over time. In several experiments on C57BL/6J mice, the odorant specificity, onset timing, recovery timing, and magnitude of the induction effect were studied. Considered together, the current findings and previous work from the laboratory support the counterintuitive conclusion that both compensatory plasticity in response to deprivation and induction in response to odor enrichment are caused by the same underlying homeostatic mechanism, the purpose of which is to preserve sensory information flow no matter the odorant milieu. This hypothesis, the detailed evidence supporting it, and speculations concerning human odor induction are discussed.


Assuntos
Privação Sensorial/fisiologia , Olfato/fisiologia , Animais , Eletrofisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Cavidade Nasal/metabolismo , Odorantes , Mucosa Olfatória/metabolismo
3.
J Bioenerg Biomembr ; 51(1): 53-63, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30421031

RESUMO

The critical period concept has been one of the most transcendent in science, education, and society forming the basis of our fixation on 'quality' of childhood experiences. The neural basis of this process has been revealed in developmental studies of visual, auditory and somatosensory maps and their enduring modification through manipulations of experience early in life. Olfaction, too, possesses a number of phenomena that share key characteristics with classical critical periods like sensitive temporal windows and experience dependence. In this review, we analyze the candidate critical period-like phenomena in olfaction and find them disanalogous to classical critical periods in other sensory systems in several important ways. This leads us to speculate as to why olfaction may be alone among exteroceptive systems in lacking classical critical periods and how life-long neurogenesis of olfactory sensory neurons and bulbar interneurons-a neotenic vestige-- relates to the structure and function of the mammalian olfactory system.


Assuntos
Neurogênese , Olfato/fisiologia , Animais , Humanos , Interneurônios , Bulbo Olfatório/crescimento & desenvolvimento , Neurônios Receptores Olfatórios
4.
Chem Senses ; 43(4): 239-247, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29688449

RESUMO

In the course of our ongoing studies of odor-cued taste avoidance (OCTA) to measure olfactory capabilities in animals, we observed that mice could rapidly learn to use the vapor of the classical bitterant quinine hydrochloride to avoid contact with the tastant. Here we expand on this observation to determine which among several compounds generally classed as bitter could be detected at a distance. Since mice were initially naïve we were able to assess whether the vapors of the bitter compounds tested were innately aversive as are their tastes. CD-1 mice could readily use vapor cues from quinine hydrochloride, denatonium benzoate (DB), and 6-propyl-2-thiouracil to avoid their taste. Although mice did not hesitate to make contact with these solutions on their first exposure, they did learn to do so typically after only 1 or 2 exposures. Bilaterally bulbectomized mice did not learn or retain the ability to avoid quinine and DB solutions by vapor alone, implicating olfaction as the mode of detection. Saturated aqueous solutions of sucrose octaacetate and caffeine which are bitter to humans and some strains of mice were not aversive in our studies. The very low vapor concentrations of the 3 bitterant solutions that mice detected at a distance, suggest that impurities in the reagent grade solutions, rather than the bitter molecules themselves were the basis of detection. Implications of these findings for taste testing and the role of odor in food acceptance/rejections decisions are discussed.


Assuntos
Agentes Aversivos/química , Aprendizagem da Esquiva/fisiologia , Olfato , Paladar/fisiologia , Animais , Cafeína/química , Sinais (Psicologia) , Feminino , Camundongos , Bulbo Olfatório/cirurgia , Propiltiouracila/química , Compostos de Amônio Quaternário/química , Quinina/química , Sacarose/análogos & derivados , Sacarose/química
5.
J Neurophysiol ; 118(5): 2770-2788, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28877965

RESUMO

The spatial distribution of receptors within sensory epithelia (e.g., retina and skin) is often markedly nonuniform to gain efficiency in information capture and neural processing. By contrast, odors, unlike visual and tactile stimuli, have no obvious spatial dimension. What need then could there be for either nearest-neighbor relationships or nonuniform distributions of receptor cells in the olfactory epithelium (OE)? Adrian (Adrian ED. J Physiol 100: 459-473, 1942; Adrian ED. Br Med Bull 6: 330-332, 1950) provided the only widely debated answer to this question when he posited that the physical properties of odors, such as volatility and water solubility, determine a spatial pattern of stimulation across the OE that could aid odor discrimination. Unfortunately, despite its longevity, few critical tests of the "sorption hypothesis" exist. Here we test the predictions of this hypothesis by mapping mouse OE responses using the electroolfactogram (EOG) and comparing these response "maps" to computational fluid dynamics (CFD) simulations of airflow and odorant sorption patterns in the nasal cavity. CFD simulations were performed for airflow rates corresponding to quiet breathing and sniffing. Consistent with predictions of the sorption hypothesis, water-soluble odorants tended to evoke larger EOG responses in the central portion of the OE than the peripheral portion. However, sorption simulation patterns along individual nasal turbinates for particular odorants did not correlate with their EOG response gradients. Indeed, the most consistent finding was a rostral-greater to caudal-lesser response gradient for all the odorants tested that is unexplained by sorption patterns. The viability of the sorption and related olfactory "fovea" hypotheses are discussed in light of these findings.NEW & NOTEWORTHY Two classical ideas concerning olfaction's receptor-surface two-dimensional organization-the sorption and olfactory fovea hypotheses-were found wanting in this study that afforded unprecedented comparisons between electrophysiological recordings in the mouse olfactory epithelium and computational fluid dynamic simulations of nasal airflow. Alternatively, it is proposed that the olfactory receptor layouts in macrosmatic mammals may be an evolutionary contingent state devoid of the functional significance found in other sensory epithelia like the cochlea and retina.


Assuntos
Células Quimiorreceptoras/citologia , Células Quimiorreceptoras/fisiologia , Modelos Neurológicos , Mucosa Olfatória/citologia , Mucosa Olfatória/fisiologia , Olfato/fisiologia , Movimentos do Ar , Análise de Variância , Animais , Simulação por Computador , Eletrodiagnóstico , Feminino , Hidrodinâmica , Camundongos , Odorantes , Estimulação Física , Respiração
6.
J Neurophysiol ; 114(3): 2023-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26269548

RESUMO

Like other biological systems, olfaction responds "homeostatically" to enduring change in the stimulus environment. This adaptive mechanism, referred to as compensatory plasticity, has been studied almost exclusively in developing animals. Thus it is unknown if this phenomenon is limited to ontogenesis and irreversible, characteristics common to some other forms of plasticity. Here we explore the effects of odor deprivation on the adult mouse olfactory epithelium (OE) using nasal plugs to eliminate nasal airflow unilaterally. Plugs were in place for 2-6 wk after which electroolfactograms (EOGs) were recorded from the occluded and open sides of the nasal cavity. Mean EOG amplitudes were significantly greater on the occluded than on the open side. The duration of plugging did not affect the results, suggesting that maximal compensation occurs within 2 wk or less. The magnitude of the EOG difference between the open and occluded side in plugged mice was comparable to adults that had undergone surgical naris occlusion as neonates. When plugs were removed after 4 wk followed by 2 wk of recovery, mean EOG amplitudes were not significantly different between the always-open and previously plugged sides of the nasal cavity suggesting that this form of plasticity is reversible. Taken together, these results suggest that compensatory plasticity is a constitutive mechanism of olfactory receptor neurons that allows these cells to recalibrate their stimulus-response relationship to fit the statistics of their current odor environment.


Assuntos
Neurogênese , Plasticidade Neuronal , Neurônios Receptores Olfatórios/fisiologia , Olfato , Animais , Feminino , Masculino , Camundongos , Odorantes , Neurônios Receptores Olfatórios/citologia
7.
Chem Senses ; 40(4): 269-78, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25787943

RESUMO

In odor-cued taste avoidance (OCTA), thirsty mice, offered either an odorized nonaversive fluid (S+) or an odorized aversive fluid (S-), quickly learn to use odor to avoid drinking the S-. Acquisition of both odor detection and odor discrimination tasks is very rapid with learning evidenced in most cases by either long response times or total avoidance on the second presentation of the S- stimulus. OCTA is perhaps one of the simplest conditioning procedures for assessing olfaction in mice; it requires only a test box, drinkometer circuit, and thirsty mice accustomed to drinking in the apparatus. Its advantages over the most commonly used alternatives, habituation-dishabituation, and the mouse dig test, are discussed.


Assuntos
Aprendizagem da Esquiva/fisiologia , Sinais (Psicologia) , Comportamento de Ingestão de Líquido/fisiologia , Odorantes , Olfato/fisiologia , Paladar/fisiologia , Animais , Feminino , Camundongos , Bulbo Olfatório/fisiologia
9.
J Exp Biol ; 217(Pt 12): 2044-52, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24311813

RESUMO

Unilateral naris occlusion, a standard method for causing odor deprivation, also alters airflow on both sides of the nasal cavity. We reasoned that manipulating airflow by occlusion could affect nasal turbinate development given the ubiquitous role of environmental stimuli in ontogenesis. To test this hypothesis, newborn mice received unilateral occlusion or sham surgery and were allowed to reach adulthood. Morphological measurements were then made of paraffin sections of the whole nasal cavity. Occlusion significantly affected the size, shape and position of turbinates. In particular, the nasoturbinate, the focus of our quantitative analysis, had a more delicate appearance on the occluded side relative to the open side. Occlusion also caused an increase in the width of the dorsal meatus within the non-occluded and occluded nasal fossae, compared with controls, and the position of most turbinates was altered. These results suggest that a mechanical stimulus from respiratory airflow is necessary for the normal morphological development of turbinates. To explore this idea, we estimated the mechanical forces on turbinates caused by airflow during normal respiration that would be absent as a result of occlusion. Magnetic resonance imaging scans were used to construct a three-dimensional model of the mouse nasal cavity that provided the input for a computational fluid dynamics simulation of nasal airflow. The simulation revealed maximum shear stress values for the walls of turbinates in the 1 Pa range, a magnitude that causes remodeling in other biological tissues. These observations raise the intriguing possibility that nasal turbinates develop partly under the control of respiratory mechanical forces.


Assuntos
Camundongos/fisiologia , Cavidade Nasal/cirurgia , Ventilação Pulmonar , Conchas Nasais/crescimento & desenvolvimento , Animais , Hidrodinâmica , Imageamento por Ressonância Magnética , Camundongos/anatomia & histologia , Camundongos/crescimento & desenvolvimento , Modelos Teóricos , Cavidade Nasal/anatomia & histologia , Conchas Nasais/anatomia & histologia
10.
Brain Sci ; 13(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38002512

RESUMO

Plasticity, the term we use to describe the ability of a nervous system to change with experience, is the evolutionary adaptation that freed animal behavior from the confines of genetic determinism. This capacity, which increases with brain complexity, is nowhere more evident than in vertebrates, especially mammals. Though the scientific study of brain plasticity dates back at least to the mid-19th century, the last several decades have seen unprecedented advances in the field afforded by new technologies. Olfaction is one system that has garnered particular attention in this realm because it is the only sensory modality with a lifelong supply of new neurons, from two niches no less! Here, we review some of the classical and contemporary literature dealing with the role of the stimulus or lack thereof in olfactory plasticity. We have restricted our comments to studies in mammals that have used dual tools of the field: stimulus deprivation and stimulus enrichment. The former manipulation has been implemented most frequently by unilateral naris occlusion and, thus, we have limited our comments to research using this technique. The work reviewed on deprivation provides substantial evidence of activity-dependent processes in both developing and adult mammals at multiple levels of the system from olfactory sensory neurons through to olfactory cortical areas. However, more recent evidence on the effects of deprivation also establishes several compensatory processes with mechanisms at every level of the system, whose function seems to be the restoration of information flow in the face of an impoverished signal. The results of sensory enrichment are more tentative, not least because of the actual manipulation: What odor or odors? At what concentrations? On what schedule? All of these have frequently not been sufficiently rationalized or characterized. Perhaps it is not surprising, then, that discrepant results are common in sensory enrichment studies. Despite this problem, evidence has accumulated that even passively encountered odors can "teach" olfactory cortical areas to better detect, discriminate, and more efficiently encode them for future encounters. We discuss these and other less-established roles for the stimulus in olfactory plasticity, culminating in our recommended "aspirations" for the field going forward.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa