RESUMO
BACKGROUND: Anaplastic Large Cell Lymphoma (ALCL) is a rare and aggressive T-cell lymphoma, classified into ALK-positive and ALK-negative subtypes, based on the presence of chromosomal translocations involving the ALK gene. The current standard of treatment for ALCL is polychemotherapy, with a high overall survival rate. However, a subset of patients does not respond to or develops resistance to these therapies, posing a serious challenge for clinicians. Recent targeted treatments such as ALK kinase inhibitors and anti-CD30 antibody-drug conjugates have shown promise but, for a fraction of patients, the prognosis is still unsatisfactory. METHODS: We investigated the genetic landscape of ALK + ALCL by whole-exome sequencing; recurring mutations were characterized in vitro and in vivo using transduced ALCL cellular models. RESULTS: Recurrent mutations in FAT family genes and the transcription factor RUNX1T1 were found. These mutations induced changes in ALCL cells morphology, growth, and migration, shedding light on potential factors contributing to treatment resistance. In particular, FAT4 silencing in ALCL cells activated the ß-catenin and YAP1 pathways, which play crucial roles in tumor growth, and conferred resistance to chemotherapy. Furthermore, STAT1 and STAT3 were hyper-activated in these cells. Gene expression profiling showed global changes in pathways related to cell adhesion, cytoskeletal organization, and oncogenic signaling. Notably, FAT mutations associated with poor outcome in patients. CONCLUSIONS: These findings provide novel insights into the molecular portrait of ALCL, that could help improve treatment strategies and the prognosis for ALCL patients.
RESUMO
Despite significant advancements in understanding the causes and progression of tumors, cancer remains one of the leading causes of death worldwide. In light of advances in cancer therapy, there has been a growing interest in drug repurposing, which involves exploring new uses for medications that are already approved for clinical use. One such medication is edaravone, which is currently used to manage patients with cerebral infarction and amyotrophic lateral sclerosis. Due to its antioxidant and anti-inflammatory properties, edaravone has also been investigated for its potential activities in treating cancer, notably as an anti-proliferative and cytoprotective drug against side effects induced by traditional cancer therapies. This comprehensive review aims to provide updates on the various applications of edaravone in cancer therapy. It explores its potential as a standalone antitumor drug, either used alone or in combination with other medications, as well as its role as an adjuvant to mitigate the side effects of conventional anticancer treatments.
Assuntos
Esclerose Lateral Amiotrófica , Neoplasias , Fármacos Neuroprotetores , Humanos , Edaravone/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Antioxidantes/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/induzido quimicamente , Sequestradores de Radicais Livres/farmacologiaRESUMO
Non-small cell lung cancer (NSCLC) remains a disease with a poor prognosis despite the advances in therapies. NSCLC with actionable oncogenic alterations represent a subgroup of diseases for which tyrosine kinase inhibitors (TKIs) have shown relevant and robust impact on prognosis, both in early and advanced stages. While the introduction of powerful TKIs increases the ratio of potentially curable patients, the disease does develop resistance over time through either secondary mutations or bypass activating tracks. Therefore, new treatment strategies are being developed to either overcome this inevitable resistance or to prevent it, and proteolysis targeting chimera agents (PROTACs) are among them. They consist of two linked molecules that bind to a target protein and an E3 ubiquitin ligase that causes ubiquitination and degradation of proteins of interest. In this paper, we review the rationale for PROTAC therapy and the current development of PROTACs for oncogene-addicted lung cancer. Moreover, we critically analyze the strengths and limitations of this promising technique that may help pave the way for future perspectives.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Proteólise , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteólise/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Animais , Oncogenes , Terapia de Alvo Molecular/métodos , Ubiquitinação/efeitos dos fármacos , Quimera de Direcionamento de ProteóliseRESUMO
Epithelial ovarian cancer (EOC), a primarily high-grade serous carcinoma (HGSOC), is one of the major causes of high death-to-incidence ratios of all gynecological cancers. Cytoreductive surgery and platinum-based chemotherapy represent the main treatments for this aggressive disease. Molecular characterization of HGSOC has revealed that up to 50% of cases have a deficiency in the homologous recombination repair (HRR) system, which makes these tumors sensitive to poly ADP-ribose inhibitors (PARP-is). However, drug resistance often occurs and overcoming it represents a big challenge. A number of strategies are under investigation, with the most promising being combinations of PARP-is with antiangiogenetic agents and immune checkpoint inhibitors. Moreover, new drugs targeting different pathways, including the ATR-CHK1-WEE1, the PI3K-AKT and the RAS/RAF/MEK, are under development both in phase I and II-III clinical trials. Nevertheless, there is still a long way to go, and the next few years promise to be exciting.
RESUMO
Cyclin-dependent kinase (CDK) 4/6 inhibitors have significantly improved progression-free survival in hormone-receptor-positive (HR+), human-epidermal-growth-factor-receptor-type-2-negative (HER2-) metastatic luminal breast cancer (mLBC). Several studies have shown that in patients with endocrine-sensitive or endocrine-resistant LBC, the addition of CDK4/6 inhibitors to endocrine therapy significantly prolongs progression-free survival. However, the percentage of patients who are unresponsive or refractory to these therapies is as high as 40%, and no reliable and reproducible biomarkers have been validated to select a priori responders or refractory patients. The selection of mutant clones in the target oncoprotein is the main cause of resistance. Other mechanisms such as oncogene amplification/overexpression or mutations in other pathways have been described in several models. In this study, we focused on palbociclib, a selective CDK4/6 inhibitor. We generated a human MCF-7 luminal breast cancer cell line that was able to survive and proliferate at different concentrations of palbociclib and also showed cross-resistance to abemaciclib. The resistant cell line was characterized via RNA sequencing and was found to strongly activate the epithelial-to-mesenchymal transition. Among the top deregulated genes, we found a dramatic downregulation of the CDK4 inhibitor CDKN2B and an upregulation of the TWIST1 transcription factor. TWIST1 was further validated as a target for the reversal of palbociclib resistance. This study provides new relevant information about the mechanisms of resistance to CDK4/6 inhibitors and suggests potential new markers for patients' follow-up care during treatment.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação para Cima , Quinase 4 Dependente de Ciclina , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Intervalo Livre de Progressão , Quinase 6 Dependente de Ciclina , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismoRESUMO
Triple-negative breast cancer (TNBC) is a very aggressive disease even in its early stages and is characterized by a severe prognosis. Neoadjuvant chemotherapy is one of the milestones of treatment, and paclitaxel (PTX) is among the most active drugs used in this setting. However, despite its efficacy, peripheral neuropathy occurs in approximately 20-25% of cases and represents the dose-limiting toxicity of this drug. New deliverable strategies to ameliorate drug delivery and reduce side effects are keenly awaited to improve patients' outcomes. Mesenchymal stromal cells (MSCs) have recently been demonstrated as promising drug delivery vectors for cancer treatment. The aim of the present preclinical study is to explore the possibility of a cell therapy approach based on the use of MSCs loaded with PTX to treat TNBC-affected patients. For this purpose, we in vitro evaluated the viability, migration and colony formation of two TNBC cell lines, namely, MDA-MB-231 and BT549, treated with MSC-PTX conditioned medium (MSC-CM PTX) in comparison with both CM of MSCs not loaded with PTX (CTRL) and free PTX. We observed stronger inhibitory effects on survival, migration and tumorigenicity for MSC-CM PTX than for CTRL and free PTX in TNBC cell lines. Further studies will provide more information about activity and potentially open the possibility of using this new drug delivery vector in the context of a clinical study.
Assuntos
Células-Tronco Mesenquimais , Neoplasias de Mama Triplo Negativas , Humanos , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Linhagem Celular Tumoral , Células-Tronco Mesenquimais/metabolismoRESUMO
The efficacy of second-line treatment for chronic myeloid leukemia (CML) plays an important role in allowing CML patients to enjoy a normal life expectancy. Four tyrosine kinase inhibitors (TKIs) are presently available: bosutinib, dasatinib, nilotinib, ponatinib. Each one has different safety and activity profiles, which are reviewed here. No controlled studies are available to guide treatment decision, which must be based on the characterization of leukemic cells, especially in cases of resistance to TKI, coupled with the safety profile of each TKI. Patient comorbidities also play an important role in the treatment decision, which can achieve a new durable response in over 50% of treated patients.
Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Ensaios Clínicos como Assunto , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/mortalidade , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Resultado do TratamentoRESUMO
Duchenne muscular dystrophy (DMD) is an hereditary disease characterized by loss of muscle fibers and their progressive substitution by fat and fibrous tissue. Mesenchymal fibro-adipogenic progenitors (FAPs) expressing the platelet-derived growth factor receptor alpha (PDGFRα) are an important source of fibrosis and adipogenesis in dystrophic skeletal muscle. Among the therapies suggested for dystrophy are those based on nitric oxide (NO) donating drugs, the administration of which slows disease progression. NO has been shown to act by enhancing the regenerative potential of the diseased muscle. Whether it acts also by inhibiting fibrosis and adipogenesis was not known. Here, we show in vitro that NO regulates FAP fate through inhibition of their differentiation into adipocytes. In mdx mice, an animal model of DMD, treatment with the NO donating drug molsidomine reduced the number of PDGFRα(+) cells as well as the deposition of both skeletal muscle fat and connective tissues. Inhibition of adipogenesis was due to NO-induced increased expression of miR-27b leading to downregulation of peroxisome proliferator-activated receptors gamma (Pparγ1) expression in a pathway independent of cGMP generation. These findings reveal an additional effect of NO in dystrophic muscle that conceivably synergizes with its known effects on regeneration improvement and explain why NO-based therapies appear effective in the treatment of muscular dystrophy.
Assuntos
Adipócitos/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Óxido Nítrico/metabolismo , Adipócitos/patologia , Animais , GMP Cíclico , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , PPAR gama/genética , PPAR gama/metabolismoRESUMO
A group of 27 patients diagnosed with metastatic triple-negative breast cancer (mTNBC) was randomly distributed into two groups and underwent different lines of metronomic treatment (mCHT). The former group (N 14) received first-line mCHT and showed a higher overall survival rate than the second group (N 13), which underwent second-line mCHT. Analysis of one patient still alive from the first group, diagnosed with mTNBC in 2019, showed a complete metabolic response (CMR) after a composite approach implicating first-line mCHT followed by second-line epirubicin and third-line nab-paclitaxel, and was chosen for subsequent molecular characterization. We found altered expression in the cancer stemness-associated gene NOTCH-1 and its corresponding protein. Additionally, we found changes in the expression of oncogenes, such as MYC and AKT, along with their respective proteins. Overall, our data suggest that a first-line treatment with mCHT followed by MTD might be effective by negatively regulating stemness traits usually associated with the emergence of drug resistance.
RESUMO
ALK and ROS1 fusions are effectively targeted by tyrosine kinase inhibitors (TKIs), however patients inevitably relapse after an initial response, often due to kinase domain mutations. We investigated circulating DNA from TKI-relapsed NSCLC patients by deep-sequencing. New EML4::ALK substitutions, L1198R, C1237Y and L1196P, were identified in the plasma of NSCLC ALK patients and characterized in a Ba/F3 cell model. Variants C1237Y and L1196P demonstrated pan-inhibitor resistance across 5 clinical and 2 investigational TKIs.
RESUMO
Metronomic chemotherapy (mCHT), defined as continuous administration of low-dose chemotherapeutic agents with no or short regular treatment-free intervals, was first introduced to the clinic in international guidelines in 2017, and, since then, has become one of the available strategies for the treatment of advanced breast cancer (ABC). Despite recent successes, many unsolved practical and theoretical issues remain to be addressed. The present review aims to identify the "lights and shadows" of mCHT in preclinical and clinical settings. In the preclinical setting, several findings indicate that one of the most noticeable effects of mCHT is on the tumor microenvironment, which, over the last twenty years, has been demonstrated to be pivotal in supporting tumor cell survival and proliferation. On the other hand, the direct effects on tumor cells have been less well-defined. In addition, critical items to be addressed are the lack of definition of an optimal biological dose (OBD), the method of administration of metronomic schedules, and the recognition and validation of predictive biomarkers. In the clinical context-where mCHT has mainly been used in a metastatic setting-low toxicity is the most well-recognised light of mCHT, whereas the type of study design, the absence of randomised trials and uncertainty in terms of doses and drugs remain among the shadows. In conclusion, growing evidence indicates that mCHT is a suitable treatment option for selected metastatic breast cancer (MBC) patients. Moreover, given its multimodal mechanisms of action, its addition to immunological and targeted therapies might represent a promising new approach to the treatment of MBC. More preclinical data are needed in this regard, which can only be obtained through support for translational research as the key link between basic science and patient care.
RESUMO
Small-cell lung cancer (SCLC) is an aggressive neuroendocrine tumor with a high relapse rate, limited therapeutic options, and poor prognosis. The combination of chemotherapy and immune-checkpoint inhibitors brings a new therapeutic era, although the lack of predictive biomarkers of response reduces the efficacy of applying the treatment to the entire population of patients with SCLC. The lack of treatments able to bind to a specific target has always been a substantial difference to the non-small cell lung cancer (NSCLC) counterpart. Delta-like canonical Notch ligand 3 is a protein frequently overexpressed in SCLC and is therefore being explored as a potentially promising therapeutic target in high-grade neuroendocrine lung cancer. In this article, we critically review the activity and efficacy of old DLL3 inhibitors antibody-drug conjugate (ADC) and their failures through new compounds and their possible applications in clinical practice, with a focus on new molecular classification of SCLC.
RESUMO
High-dose standard-of-care chemotherapy is the only option for triple-negative breast cancer (TNBC) patients, which eventually die due to metastatic tumors. Recently, metronomic chemotherapy (mCHT) showed advantages in treating TNBCs leading us to investigate the anti-metastatic and anti-angiogenic potential of metronomic 5-Fluorouracil plus Vinorelbine (5-FU+VNR) on endothelial cells (ECs) and TNBCs in comparison to standard treatment (STD). We found that 10-fold lower doses of 5-FU+VNR given mCHT vs. STD inhibits cell proliferation and survival of ECs and TNBC cells. Both schedules strongly affect ECs migration and invasion, but in TNBC cells mCHT is significantly more effective than STD in impairing cell migration and invasion. The two treatments disrupt FAK/VEGFR/VEGF signaling in both ECs and TNBC cells. mCHT, and to a much lesser extent STD treatment, induces apoptosis in ECs, whereas it switches the route of cell death from apoptosis (as induced by STD) to autophagy in TNBC cells. mCHT-treated TNBCs-derived conditioned medium also strongly affects ECs' migration, modulates different angiogenesis-associated proteins, and hampers angiogenesis in matrix sponge in vivo. In conclusion, mCHT administration of 5-FU+VNR is more effective than STD schedule in controlling cell proliferation/survival and migration/invasion of both ECs and TNBC cells and has a strong anti-angiogenic effect. Our data suggest that the stabilization of tumor growth observed in TNBC patients treated with mCHT therapy schedule is likely due not only to direct cytotoxic effects but also to anti-metastatic and anti-angiogenic effects.
RESUMO
CDK4/6 inhibitors in association with endocrine therapy represent the best therapeutic choice for either endocrine-sensitive or resistant hormone-receptor-positive advanced breast cancer patients. On the contrary, the optimal therapeutic strategy after the failure of CDK4/6 inhibitors-based treatment still remains an open question worldwide. In this review, we analyze the most studied mechanisms of resistance to CDK4/6 inhibitors treatment, as well as the most significant results of retrospective and prospective trials in the setting of progression after CDK4/6 inhibitors, to provide the reader a comprehensive overview from both a preclinical and especially a clinical perspective. In our opinion, an approach based on a deeper knowledge of resistance mechanisms to CDK4/6 inhibitors, but also on a careful analysis of what is done in clinical practice, can lead to a better definition of prospective randomized trials, to implement a personalized sequence approach, based on molecular analyses.
RESUMO
Metronomic chemotherapy treatment (mCHT) refers to the chronic administration of low doses chemotherapy that can sustain prolonged, and active plasma levels of drugs, producing favorable tolerability and it is a new promising therapeutic approach in solid and in hematologic tumors. mCHT has not only a direct effect on tumor cells, but also an action on cell microenvironment, by inhibiting tumor angiogenesis, or promoting immune response and for these reasons can be considered a multi-target therapy itself. Here we review the state of the art of mCHT use in some classical tumour types, such as breast and no small cell lung cancer (NSCLC), see what is new regarding most recent data in different cancer types, such as glioblastoma (GBL) and acute myeloid leukemia (AML), and new drugs with potential metronomic administration. Finally, a look at the strategic use of mCHT in the context of health emergencies, or in low -and middle-income countries (LMICs), where access to adequate healthcare is often not easy, is mandatory, as we always need to bear in in mind that equity in care must be a compulsory part of our medical work and research.
RESUMO
: Targeted therapy changed the standard of care in ALK-dependent tumors. However, resistance remains a major challenge. Lorlatinib is a third-generation ALK inhibitor that inhibits most ALK mutants resistant to current ALK inhibitors. In this study, we utilize lorlatinib-resistant anaplastic large cell lymphoma (ALCL), non-small cell lung cancer (NSCLC), and neuroblastoma cell lines in vitro and in vivo to investigate the acquisition of resistance and its underlying mechanisms. ALCL cells acquired compound ALK mutations G1202R/G1269A and C1156F/L1198F in vitro at high drug concentrations. ALCL xenografts selected in vivo showed recurrent N1178H (5/10 mice) and G1269A (4/10 mice) mutations. Interestingly, intracellular localization of NPM/ALKN1178H skewed toward the cytoplasm in human cells, possibly mimicking overexpression. RNA sequencing of resistant cells showed significant alteration of PI3K/AKT and RAS/MAPK pathways. Functional validation by small-molecule inhibitors confirmed the involvement of these pathways in resistance to lorlatinib. NSCLC cells exposed in vitro to lorlatinib acquired hyperactivation of EGFR, which was blocked by erlotinib to restore sensitivity to lorlatinib. In neuroblastoma, whole-exome sequencing and proteomic profiling of lorlatinib-resistant cells revealed a truncating NF1 mutation and hyperactivation of EGFR and ErbB4. These data provide an extensive characterization of resistance mechanisms that may arise in different ALK-positive cancers following lorlatinib treatment. SIGNIFICANCE: High-throughput genomic, transcriptomic, and proteomic profiling reveals various mechanisms by which multiple tumor types acquire resistance to the third-generation ALK inhibitor lorlatinib.
Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Lactamas Macrocíclicas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Aminopiridinas , Animais , Antineoplásicos/farmacologia , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Lactamas , Camundongos , Microscopia de Fluorescência , Mutação , Transplante de Neoplasias , Neuroblastoma/tratamento farmacológico , Fosforilação , Pirazóis , Análise de Sequência de RNARESUMO
This corrects the article DOI: 10.1038/srep46290.
RESUMO
The complicated, evolving landscape of cancer mutations poses a formidable challenge to identify cancer genes among the large lists of mutations typically generated in NGS experiments. The ability to prioritize these variants is therefore of paramount importance. To address this issue we developed OncoScore, a text-mining tool that ranks genes according to their association with cancer, based on available biomedical literature. Receiver operating characteristic curve and the area under the curve (AUC) metrics on manually curated datasets confirmed the excellent discriminating capability of OncoScore (OncoScore cut-off threshold = 21.09; AUC = 90.3%, 95% CI: 88.1-92.5%), indicating that OncoScore provides useful results in cases where an efficient prioritization of cancer-associated genes is needed.
Assuntos
Genes Neoplásicos , Neoplasias/genética , Software , Humanos , MutaçãoRESUMO
Based on our previous studies where we found that IFNAR2-1, the short IFNalpha/beta receptor variant, was expressed in pleomorphic sarcoma cells, we decided to determine the relative levels of expression of IFNAR2.1 versus the longer form, named IFNAR2.2, in different pleomorphic sarcoma cells in relation to their response to interferon alpha treatment. When examining a panel of PS cells isolated from surgical specimens, we found that IFNAR2.1 prevailed in 6 out 7 lines analysed and that these generally showed cell cycle arrest and low levels of apoptosis upon IFNalpha treatment. The reverse ratio, i.e. higher constitutive levels of IFNAR2.2 than IFNAR2.1, was associated with an irreversible inhibition of cell growth and pronounced apoptosis. Impairment of tumour growth by low- and high-dose IFNalpha treatment of nude mice inoculated with PS cells expressing predominantly IFNAR2.1 further asserted the effect of the cytokine also in vivo. A proteomic analysis of 120 signalling components in growth arrested, apoptotic PS cells harbouring higher levels of IFNAR2.2 revealed engagement of the canonical Jak/Stat/ISGF3-pathway, the activation of the mitochodrial apoptotic pathway and a potentially novel mechanism of cell cycle blockade unrelated to down-regulation of cyclin A/B and their interacting/regulating kinases. Our results confirm the dominant negative role of IFNAR2.1, but also suggest that the relative endogenous levels of the two IFNalpha/beta receptor isoforms may dictate the signalling pathways triggered by the ligand, such as to cause exclusively cell cycle arrest or induce programmed cell death. This parameter may be of importance for the clinical outcome of IFNalpha treatment of PS.
Assuntos
Antineoplásicos/farmacologia , Apoptose , Interferon-alfa/farmacologia , Proteínas de Membrana/metabolismo , Receptores de Interferon/metabolismo , Sarcoma/metabolismo , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Membrana Celular/imunologia , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Camundongos , Transplante de Neoplasias , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteômica , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Receptor de Interferon alfa e beta , Receptores de Interferon/análise , Receptores de Interferon/genética , Transdução de SinaisRESUMO
Although malignant fibrous histiocytoma (MFH) is one of the most diffuse and highly aggressive tumors among soft tissue sarcomas in adults, it is poorly characterized from the molecular point of view. The overt lack of expression of phenotypic markers in MFH cells and the hypothesis that MFH may originate from transformed multipotent stem/progenitor cells with mesenchymal features has led us to investigate this notion and search for 'MFH-specific' genes. To address this problem, we have undertaken a differential display-based three-pair comparative mRNA profiling of bone-marrow derived mesenchymal stem cells (MSC) and cells isolated by primary MFH, leiomyosarcoma and smooth muscle cells, fibrosarcoma and dermal fibroblasts. This approach highlighted pair-wise analogies in gene expression patterns between matched tumor and healthy cells and yielded direct access to 43 genes differentially expressed between MSC and MFH cells. Eleven of the identified genes were selected for comparative evaluation of their expression levels in other sarcoma types, as well as potential markers for the detection of circulating tumor cells. Several of these genes defined the stem/progenitor versus MFH cell and some of them have the potential to be exploited for disclosure of circulating sarcoma cells. The striking similarity in the gene expression patterns observed in the two cell types was further corroborated by a remarkable similarity in the cell phenotypic markers that these cells expressed ex vivo. The findings open now the possibility to examine, also functionally, genes not previously known to be implicated in MFH development and strengthen the hypothesis that MFH originates from a mesenchymal progenitor cell.