Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602012

RESUMO

Zeolitic imidazolate frameworks (ZIFs) hold great promise in carbon capture, owing to their structural designability and functional porosity. However, intrinsic linker dynamics limit their pressure-swing adsorption application to biogas upgrading and methane purification. Recently, a functionality-locking strategy has shown feasibility in suppressing such dynamics. Still, a trade-off between structural rigidity and uptake capacity remains a key challenge for optimizing their high-pressure CO2/CH4 separation performance. Here, we report a sequential structural locking (SSL) strategy for enhancing the CO2 capture capacity and CH4 purification productivity in dynamic ZIFs (dynaZIFs). Specifically, we isolated multiple functionality-locked phases, ZIF-78-lt, -ht1, and -ht2, by activation at 50, 160, and 210 °C, respectively. We observed multiple-level locking through gas adsorption and powder X-ray diffraction. We uncovered an SSL mechanism dominated by linker-linker π-π interactions that transit to C-H···O hydrogen bonds with binding energies increasing from -0.64 to -2.77 and -5.72 kcal mol-1, respectively, as evidenced by single-crystal X-ray diffraction and density functional theory calculations. Among them, ZIF-78-ht1 exhibits the highest CO2 capture capacity (up to 18.6 mmol g-1) and CH4 purification productivity (up to 7.6 mmol g-1) at 298 K and 30 bar. These findings provide molecular and energetic insights into leveraging framework flexibility through the SSL mechanism to optimize porous materials' separation performance.

2.
Angew Chem Int Ed Engl ; 62(34): e202217841, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37377145

RESUMO

Pressing global challenges, such as climate change, the COVID-19 pandemic, or antibiotic resistance, require coordinated international responses guided by evidence-informed decisions. For this purpose, it is critical that scientists engage in providing insights during the decision-making process. However, the mechanisms for the engagement of scientists in policy-making are complex and vary internationally, which often poses significant challenges to their involvement. Herein, we address some of the mechanisms and barriers for scientists to engage in policy-making with a global perspective by early-career scientists. We highlight the importance of scientific academies, societies, universities, and early-career networks as stakeholders and how they can adapt their structures to actively contribute to shaping global policies, with representative examples from chemistry-related disciplines. We showcase the importance of raising awareness, providing resources and training, and leading discussions about connecting emerging scientists with global decision-makers to address societal challenges through policies.


Assuntos
COVID-19 , Pandemias , Humanos , Pandemias/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , Formulação de Políticas , Políticas
3.
Angew Chem Int Ed Engl ; 61(39): e202207467, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35765853

RESUMO

Three-membered rings (3-rings) are an important structural motif in zeolite chemistry, but their formation remains serendipitous in reticular chemistry when designing zeolitic imidazolate frameworks (ZIFs). Herein, we report a design principle for constructing four new ZIFs, termed ZIF-1001 to -1004, from tetrahedral ZnII centers (T), benzotriazolate (bTZ), and different functionalized benzimidazolates (RbIM) that adopt a new zeolite NPO-type topology built from 3-rings. Two factors were critical for this discovery: i) incorporating the bTZ linker within the structures formed 3-rings due to a ∠(T-bTZ-T) angle of 120-130° reminiscent of the ∠(Ge-O-Ge) angle (130°) observed in germanate zeolite-type structures having 3-rings; and ii) RbIM guided the coordination chemistry of bTZ to bind preferentially in an imidazolate-type mode. This series' ability to selectively capture CO2 from high-humidity flue gas and trap ethane from tail gas during shale gas extraction was demonstrated.

4.
Nat Mater ; 17(4): 301-307, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29483634

RESUMO

The problem with current state-of-the-art catalysts for CO2 photo- or electroreduction is rooted in the notion that no single system can independently control, and thus optimize, the interplay between activity, selectivity and efficiency. At its core, reticular chemistry is recognized for its ability to control, with atomic precision, the chemical and structural features (activity and selectivity) as well as the output optoelectronic properties (efficiency) of porous, crystalline materials. The molecular building blocks that are in a reticular chemist's toolbox are chosen in such a way that the structures are rationally designed, framework chemistry is performed to integrate catalytically active components, and the manner in which these building blocks are connected endows the material with the desired optoelectronic properties. The fact that these aspects can be fine-tuned independently lends credence to the prospect of reticular chemistry contributing to the design of next-generation CO2 reduction catalysts.

5.
Nat Mater ; 17(10): 943, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30087423

RESUMO

In the version of this Perspective originally published, the titles of the references were missing; the online versions have now been amended to include them.

6.
Inorg Chem ; 58(3): 1738-1741, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30638368

RESUMO

A new europium-based metal-organic framework, termed KFUPM-3, was constructed using an allyloxy-functionalized linker. As a result of coordinative interactions between the allyloxy moieties and Pd2+, highly selective changes in both the absorption and emission spectra of KFUPM-3 were observed. Accordingly, KFUPM-3 was demonstrated to have an ultrasensitive Pd2+ detection limit (44 ppb), regenerative properties without loss in performance, detection of palladium in different oxidation states and in the presence of other competitor metal ions, and fully functional sensing capabilities over a wide pH range.

7.
Angew Chem Int Ed Engl ; 58(6): 1552-1560, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30423215

RESUMO

We detail the lessons learned, challenges, achievements, and outlook in building a chemistry research center in Vietnam. Through the principles of "global science", we provide specific insight into the process behind establishing an internationally-competitive research program-a model that is scalable and adaptable to countries beyond Vietnam. Furthermore, we highlight the prospects for success in advancing global science education, research capacity building, and mentorship.

8.
J Am Chem Soc ; 138(13): 4330-3, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26998612

RESUMO

A crystalline material with a two-dimensional structure, termed metal-organic framework-901 (MOF-901), was prepared using a strategy that combines the chemistry of MOFs and covalent-organic frameworks (COFs). This strategy involves in situ generation of an amine-functionalized titanium oxo cluster, Ti6O6(OCH3)6(AB)6 (AB = 4-aminobenzoate), which was linked with benzene-1,4-dialdehyde using imine condensation reactions, typical of COFs. The crystal structure of MOF-901 is composed of hexagonal porous layers that are likely stacked in staggered conformation (hxl topology). This MOF represents the first example of combining metal cluster chemistry with dynamic organic covalent bond formation to give a new crystalline, extended framework of titanium metal, which is rarely used in MOFs. The incorporation of Ti(IV) units made MOF-901 useful in the photocatalyzed polymerization of methyl methacrylate (MMA). The resulting polyMMA product was obtained with a high-number-average molar mass (26 850 g mol(-1)) and low polydispersity index (1.6), which in many respects are better than those achieved by the commercially available photocatalyst (P-25 TiO2). Additionally, the catalyst can be isolated, reused, and recycled with no loss in performance.

9.
Inorg Chem ; 55(12): 6201-7, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27248714

RESUMO

A presynthesized, square planar copper imidazole complex, [Cu(imidazole)4](NO3)2, was utilized as a precursor in the synthesis of a new series of zeolitic imidazolate frameworks, termed ZIF-202, -203, and -204. The structures of all three members were solved by single-crystal X-ray diffraction analysis, which revealed ZIF-203 and -204 having successfully integrated square planar units within the backbones of their respective frameworks. As a result of this unit, the structures of both ZIF-203 and -204 were found to adopt unprecedented three-dimensional nets, namely, ntn and thl, respectively. One member of this series, ZIF-204, was demonstrated to be highly porous, exhibit exceptional stability in water, and selectively capture CO2 over CH4 under both dry and wet conditions without any loss in performance over three cycles. Remarkably, the regeneration of ZIF-204 was performed under the mild conditions of flowing a pure N2 gas through the material at ambient temperature.

10.
J Am Chem Soc ; 137(49): 15394-7, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26595681

RESUMO

A series of three-dimensional (3D) extended metal catecholates (M-CATs) was synthesized by combining the appropriate metal salt and the hexatopic catecholate linker, H6THO (THO(6-) = triphenylene-2,3,6,7,10,11-hexakis(olate)) to give Fe(THO)·Fe(SO4) (DMA)3, Fe-CAT-5, Ti(THO)·(DMA)2, Ti-CAT-5, and V(THO)·(DMA)2, V-CAT-5 (where DMA = dimethylammonium). Their structures are based on the srs topology and are either a 2-fold interpenetrated (Fe-CAT-5 and Ti-CAT-5) or noninterpenetrated (V-CAT-5) porous anionic framework. These examples are among the first catecholate-based 3D frameworks. The single crystal X-ray diffraction structure of the Fe-CAT-5 shows bound sulfate ligands with DMA guests residing in the pores as counterions, and thus ideally suited for proton conductivity. Accordingly, Fe-CAT-5 exhibits ultrahigh proton conductivity (5.0 × 10(-2) S cm(-1)) at 98% relative humidity (RH) and 25 °C. The coexistence of sulfate and DMA ions within the pores play an important role in proton conductivity as also evidenced by the lower conductivity values found for Ti-CAT-5 (8.2 × 10(-4) S cm(-1) at 98% RH and 25 °C), whose structure only contained DMA guests.

11.
J Am Chem Soc ; 137(7): 2641-50, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25646798

RESUMO

Metal-organic framework-177 (MOF-177) is one of the most porous materials whose structure is composed of octahedral Zn4O(-COO)6 and triangular 1,3,5-benzenetribenzoate (BTB) units to make a three-dimensional extended network based on the qom topology. This topology violates a long-standing thesis where highly symmetric building units are expected to yield highly symmetric networks. In the case of octahedron and triangle combinations, MOFs based on pyrite (pyr) and rutile (rtl) nets were expected instead of qom. In this study, we have made 24 MOF-177 structures with different functional groups on the triangular BTB linker, having one or more functionalities. We find that the position of the functional groups on the BTB unit allows the selection for a specific net (qom, pyr, and rtl), and that mixing of functionalities (-H, -NH2, and -C4H4) is an important strategy for the incorporation of a specific functionality (-NO2) into MOF-177 where otherwise incorporation of such functionality would be difficult. Such mixing of functionalities to make multivariate MOF-177 structures leads to enhancement of hydrogen uptake by 25%.

12.
Inorg Chem ; 54(20): 10065-72, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26445199

RESUMO

Four crystalline, porous metal-organic frameworks (MOFs), based on a new hexatopic linker, 1',2',3',4',5',6'-hexakis(4-carboxyphenyl)benzene (H6CPB), were synthesized and fully characterized. Interestingly, two members of this series exhibited new topologies, namely, htp and hhp, which were previously unseen in MOF chemistry. Gas adsorption measurements revealed that all members exhibited high CO2 selectivity over N2 and CH4. Accordingly, breakthrough measurements were performed on a representative example, in which the effective separation of CO2 from binary mixtures containing either N2 or CH4 was demonstrated without any loss in performance over three consecutive cycles.

13.
Inorg Chem ; 53(12): 5881-3, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24878113

RESUMO

Metal-organic frameworks (MOFs) containing more than two kinds of metal ions mixed in one secondary building unit are rare because the synthesis often yields mixed MOF phases rather than a pure phase of a mixed-metal MOF (MM-MOF). In this study, we use a one-pot reaction to make microcrystalline MOF-74 [M2(DOT); DOT = dioxidoterephthalate] with 2 (Mg and Co), 4 (Mg, Co, Ni, and Zn), 6 (Mg, Sr, Mn, Co, Ni, and Zn), 8 (Mg, Ca, Sr, Mn, Fe, Co, Ni, and Zn), and 10 (Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Zn, and Cd) different kinds of divalent metals. The powder X-ray diffraction patterns of MM-MOF-74 were identical with those of single-metal MOF-74, and no amorphous phases were found by scanning electron microscopy. The successful preparation of guest-free MM-MOF-74 samples was confirmed by N2 adsorption measurements. Elemental analysis data also support the fact that all metal ions used in the MOF synthesis are incorporated within the same MOF-74 structure. Energy-dispersive X-ray spectroscopies indicate that metal ions are heterogeneously distributed within each of the crystalline particles. This approach is also employed to incorporate metal ions (i.e., Ca, Sr, Ba, and Cd) from which the parent MOF structure could not be made as a single-metal-containing MOF.

14.
Angew Chem Int Ed Engl ; 53(40): 10645-8, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25044990

RESUMO

Hydrophobic zeolitic imidazolate frameworks (ZIFs) with the chabazite (CHA) topology are synthesized by incorporating two distinct imidazolate links. Zn(2-mIm)0.86 (bbIm)1.14 (ZIF-300), Zn(2-mIm)0.94 (cbIm)1.06 (ZIF-301), and Zn(2-mIm)0.67 (mbIm)1.33 (ZIF-302), where 2-mIm = 2-methylimidazolate, bbIm = 5(6)-bromobenzimidazolate, cbIm = 5(6)-chlorobenzimidazolate, and mbIm = 5(6)-methylbenzimidazolate, were prepared by reacting zinc nitrate tetrahydrate and 2-mIm with the respective bIm link in a mixture of N,N-dimethylformamide (DMF) and water. Their structures were determined by single-crystal X-ray diffraction and their permanent porosity shown. All of these structures are hydrophobic as confirmed by water adsorption isotherms. All three ZIFs are equally effective at the dynamic separation of CO2 from N2 under both dry and humid conditions without any loss of performance over three cycles and can be regenerated simply by using a N2 flow at ambient temperature.

15.
ACS Appl Mater Interfaces ; 16(13): 16522-16531, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529914

RESUMO

The concept of a molecular nanovalve is applied to a synthesized biocompatible hydrogen-bonded organic framework (HOF), termed RSS-140, to load, trap, and subsequently release an antioxidant on command. Specifically, we exploit the pore windows of RSS-140 (i.e., ß-CD cavities) to first load and trap the antioxidant, Trolox, within the internal pores of the HOF (Trolox⊂RSS-140) and, to prevent it from leaching, utilize supramolecular chemistry to complex azobenzene (Azo) with ß-CD (Trolox⊂Azo@RSS-140). The molecular nanovalve is fully realized upon exposing Trolox⊂Azo@RSS-140 to UV light with a specific wavelength, which induces Azo isomerization, Azo decomplexation from ß-CD, and subsequent release of Trolox from the pores of RSS-140. The biocompatibility and nontoxicity of Trolox⊂Azo@RSS-140, together with the absolute control over the nanovalve opening, were established to yield a system that safely and slowly releases Trolox for longer-lasting antioxidant efficacy. As the field of supramolecular chemistry is rich with similar systems and many such systems can be used as building blocks to construct HOFs or other extended framework materials, we envision the molecular nanovalve concept to be applied widely for controllably delivering molecular cargo for diverse applications.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38109287

RESUMO

Agrichemical adjuvants that combine a highly selective, efficient, and active mode of operation are critically needed to realize a more sustainable approach to their usage. Herein, we report the synthesis and full characterization of two new metal-organic frameworks (MOFs), termed UPMOF-1 and UPMOF-2, that were constructed from eco-friendly Ca2+ ions and naturally occurring, low-molecular weight plant acids, l-malic and d-tartaric acid, respectively. Upon structural elucidation of both MOFs, a widely used fungicide, hexaconazole (Hex), was loaded on the structures, reaching binding affinities of -5.0 and -3.5 kcal mol-1 and loading capacities of 63% and 62% for Hex@UPMOF-1 and Hex@UPMOF-2, respectively, as a result of the formation of stable host-guest interactions. Given the framework chemistry of the MOFs and their predisposition to disassembly under relevant agricultural conditions, the sustained release kinetics were determined to show nearly quantitative release (98% and 95% for Hex@UPMOF-1 and Hex@UPMOF-2, respectively) after >500 h, a release profile drastically different than the control (>80% release in 24 h), from which the high efficiency of these new systems was established. To confirm their high selectivity and activity, in vitro and in vivo studies were performed to illustrate the abilities of Hex@UPMOF-1 and Hex@UPMOF-2 to combat the known aggressive pathogen Ganoderma boninense that causes basal stem rot disease in oil palm. Accordingly, at an extremely low concentration of 0.05 µg mL-1, both Hex@UPMOF-1 and Hex@UPMOF-2 were demonstrated to completely inhibit (100%) G. boninense growth, and during a 26 week in vivo nursery trial, the progression of basal stem rot infection was completely halted upon treatment with Hex@UPMOF-1 and Hex@UPMOF-2 and seedling growth was accelerated given the additional nutrients supplied via the disassembly of the MOFs. This study represents a significant step forward in the design of adjuvants to support the environmentally responsible use of agrichemical crop protection.

17.
ACS Biomater Sci Eng ; 8(6): 2445-2454, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35583465

RESUMO

Cancer-targeting nanotherapeutics offer promising opportunities for selective delivery of cytotoxic chemotherapeutics to cancer cells. However, the understanding of dissolution behavior and safety profiles of such nanotherapeutics is scarce. In this study, we report the dissolution profile of a cancer-targeting nanotherapeutic, gemcitabine (GEM) encapsulated within RGD-functionalized zeolitic imidazolate framework-8 (GEM⊂RGD@nZIF-8), in dissolution media having pH = 6.0 and 7.4. GEM⊂RGD@nZIF-8 was not only responsive in acidic media (pH = 6.0) but also able to sustain the dissolution rate (57.6%) after 48 h compared to non-targeting nanotherapeutic GEM⊂nZIF-8 (76%). This was reflected by the f2 value of 36.1, which indicated a difference in the dissolution behaviors of GEM⊂RGD@nZIF-8 and GEM⊂nZIF-8 in acidic media compared to those in neutral media (pH = 7.4). A dissolution kinetic study showed that the GEM release mechanism from GEM⊂RGD@nZIF-8 followed the Higuchi model. In comparison to a non-targeting nanotherapeutic, the cancer-targeting nanotherapeutic exhibited an enhanced permeability rate in healthy zebrafish embryos but did not induce lethality to 50% of the embryos (LC50 > 250 µg mL-1) with significantly improved survivability (75%) after 96 h of incubation. Monitoring malformation showed minimal adverse effects with only 8.3% of edema at 62.5 µg mL-1. This study indicates that cancer-targeting GEM⊂RGD@nZIF, with its pH-responsive behavior for sustaining chemotherapeutic dissolution in a physiologically relevant environment and its non-toxicity toward the healthy embryos within the tested concentrations, has considerable potential for use in cancer treatment.


Assuntos
Neoplasias , Peixe-Zebra , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Solubilidade
18.
Front Chem ; 10: 1076350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545218

RESUMO

To improve the selective delivery of cisplatin (Cis) to cancer cells, we report and establish the significance of active, targeting drug delivery nanosystems for efficient treatment of lung cancer. Specifically, pH-responsive nano-sized zeolitic imidazolate framework (nZIF-90) was synthesized, post-synthetically modified with an Arg-Gly-Asp peptide motif (RGD@nZIF-90), a known cancer cell homing peptide, and loaded with a large amount of Cis (RGD@Cis⊂nZIF-90). RGD@Cis⊂nZIF-90 was shown to be highly stable under physiological conditions (pH = 7.4) with framework dissociation occurring under slightly acidic conditions (pH = 5.0)-conditions relevant to tumor cells-from which 90% of the encapsulated Cis was released in a sustained manner. In vitro assays demonstrated that RGD@Cis⊂nZIF-90 achieved significantly better cytotoxicity (65% at 6.25 µg ml-1) and selectivity (selectivity index = 4.18 after 48 h of treatment) against adenocarcinoma alveolar epithelial cancer cells (A549) when compared with the unmodified Cis⊂nZIF-90 (22%). Cellular uptake using A549 cells indicated that RGD@Cis⊂nZIF-90 was rapidly internalized leading to significant cell death. After successfully realizing this nanocarrier system, we demonstrated its efficacy in transporting and delivering Cis to cancer cells.

19.
Nat Commun ; 13(1): 4873, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986024

RESUMO

Harvesting water vapor from desert, arid environments by metal-organic framework (MOF) based devices to deliver clean liquid water is critically dependent on environment and climate conditions. However, reported devices have yet been developed to adapt in real-time to such conditions during their operation, which severely limits water production efficiency and unnecessarily increases power consumption. Herein, we report and detail a mode of water harvesting operation, termed 'adaptive water harvesting', from which a MOF-based device is proven capable of adapting the adsorption and desorption phases of its water harvesting cycle to weather fluctuations throughout a given day, week, and month such that its water production efficiency is continuously optimized. In performance evaluation experiments in a desert, arid climate (17-32% relative humidity), the adaptive water harvesting device achieves a 169% increase in water production (3.5 LH2O kgMOF-1 d-1) when compared to the best-performing, reported active device (0.7-1.3 LH2O kgMOF-1 d-1 at 10-32% relative humidity), a lower power consumption (1.67-5.25 kWh LH2O-1), and saves time by requiring nearly 1.5 cycles less than a counterpart active device. Furthermore, the produced water meets the national drinking standards of a potential technology-adopting country.


Assuntos
Estruturas Metalorgânicas , Adsorção , Clima Desértico , Vapor , Luz Solar
20.
Dalton Trans ; 50(7): 2375-2386, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33555001

RESUMO

Chemotherapeutic agents used in treating certain cancer types operate in a non-selective manner tending to accumulate in normal, healthy tissue when high doses are used. To mitigate the toxicity effect resulting from this, there is an urgent need to develop active nano delivery systems capable of regulating optimal doses specifically to cancer cells without harming adjacent normal cells. Herein, we report a versatile nanoparticle - zeolitic imidazolate framework-8 (nZIF-8) - that is loaded with a chemotherapeutic agent (gemcitabine; GEM) and surface-functionalized with an autonomous homing system (Arg-Gly-Asp peptide ligand; RGD) via a straightforward, one-pot solvothermal reaction. Successful functionalization of the surface of nZIF-8 loaded GEM (GEM⊂nZIF-8) with RGD was proven by spectroscopic and electron microscopy techniques. This surface-functionalized nanoparticle (GEM⊂RGD@nZIF-8) exhibited enhanced uptake in human lung cancer cells (A549), compared with non-functionalized GEM⊂nZIF-8. The GEM⊂RGD@nZIF-8, experienced not only efficient uptake within A549, but also induced obvious cytotoxicity (75% at a concentration of 10 µg mL-1) and apoptosis (62%) after 48 h treatment when compared to the nanoparticle absent of the RGD homing system (GEM⊂nZIF-8). Most importantly, this surface-functionalized nanoparticle was more selective towards lung cancer cells (A549) than normal human lung fibroblast cells (MRC-5) with a selectivity index (SI) of 3.98. This work demonstrates a new one-pot strategy for realizing a surface-functionalized zeolitic imidazolate framework that actively targets cancer cells via an autonomous homing peptide system to deliver a chemotherapeutic payload effectively.


Assuntos
Antineoplásicos , Desoxicitidina/análogos & derivados , Imidazóis , Neoplasias Pulmonares/tratamento farmacológico , Estruturas Metalorgânicas , Nanopartículas , Oligopeptídeos , Zeolitas , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Humanos , Imidazóis/administração & dosagem , Imidazóis/química , Estruturas Metalorgânicas/administração & dosagem , Estruturas Metalorgânicas/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Propriedades de Superfície , Zeolitas/administração & dosagem , Zeolitas/química , Gencitabina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa