Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; : 1-17, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710624

RESUMO

Constipation is a common gastrointestinal condition, which may occur at any age and affects countless people. The search for new treatments for constipation is ongoing as current drug treatments fail to provide fully satisfactory results. In recent years, probiotics have attracted much attention because of their demonstrated therapeutic efficacy and fewer side effects than pharmaceutical products. Many studies attempted to answer the question of how probiotics can alleviate constipation. It has been shown that different probiotic strains can alleviate constipation by different mechanisms. The mechanisms on probiotics in relieving constipation were associated with various aspects, including regulation of the gut microbiota composition, the level of short-chain fatty acids, aquaporin expression levels, neurotransmitters and hormone levels, inflammation, the intestinal environmental metabolic status, neurotrophic factor levels and the body's antioxidant levels. This paper summarizes the perception of the mechanisms on probiotics in relieving constipation and provides some suggestions on new research directions.

2.
Food Chem ; 444: 138622, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38310779

RESUMO

Three cultivars of waxy rice starch with different multi-scale structures were subjected to α-amylase hydrolysis to determine amylopectin fine structure, production of oligosaccharides, morphology, and crystallinity of the partially hydrolyzed starch granules. α-amylases hydrolyzed the amylopectin B2 chain during the initial stage of hydrolysis, suggesting that it is primarily located in the outer shell of the granules. For waxy rice starch with loose structure, α-amylases attacked the crystalline and amorphous regions simultaneously in the initial stage, while for starch granules with compact structure, the outer shell blocklet (crystalline structure) can be a hurdle for α-amylases to proceed to hydrolysis of the internal granule structure. The ability of α-amylases from porcine pancreatic α-amylases to attack the outer shell crystalline structure was lower than that of α-amylases from Bacillus amyloliquefaciens and Aspergillus oryzae. These results show that α-amylase source and rice cultivar combinations can be used to generate diverse structures in degraded waxy rice starch.


Assuntos
Oryza , Amido , Amido/química , Amilopectina/química , alfa-Amilases/metabolismo , Hidrólise , Oryza/química
3.
Int J Biol Macromol ; 259(Pt 1): 129139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176497

RESUMO

Normal and waxy maize starches with and without removal of starch granule surface lipids (SGSLs) were crosslinked by POCl3 (0.01 %, 0.1 % and 1 %). Crosslinked starches showed lower swelling power and solubility, but higher pasting viscosity, pseudoplasticity, thixotropy, storage modulus and loss modulus. Crosslinking increased the double helical structure but decreased the crystallinity for waxy maize starch. The phosphorus content of crosslinked waxy maize starches after SGSLs removal increased, indicating SGSLs removal promoted crosslinking. SGSLs removal increased G' and G" for crosslinked waxy maize starches. SGSLs removal increased SP and solubility and decreased pasting and rheological parameters of starches. With increased POCl3 dosage, the effect of SGSLs removal on starch properties was gradually suppressed by crosslinking. Waxy and normal maize starches showed significantly different changes with crosslinking and SGSLs removal, and the presence of amylose seemed to impede the effect of crosslinking and SGSLs removal. The removal of SGSLs could extend the application of crosslinked starch in frozen foods, drinks, and canned foods as thickener and stabilizer, due to its better hydrophilicity and viscous liquid-like rheological properties. The study will assist carbohydrate chemists and food processors in developing new food products.


Assuntos
Amido , Zea mays , Zea mays/química , Amido/química , Amilose/química , Amilopectina/química , Viscosidade , Ceras/química
4.
Foods ; 13(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39123640

RESUMO

Mild alkali treatment can potentially be developed as a greener alternative to the traditional alkali treatment of starch, but the effect of mild alkali on starch is still understudied. Normal and waxy rice starches were subjected to mild alkali combined with hydrothermal treatment to investigate their changes in physicochemical properties. After mild alkali treatment, the protein content of normal and waxy rice starches decreased from 0.76% to 0.23% and from 0.89% to 0.23%, respectively. Mild alkali treatment decreased gelatinization temperature but increased the swelling power and solubility of both starches. Mild alkali treatment also increased the gelatinization enthalpy of waxy rice starch from 20.01 J/g to 25.04 J/g. Mild alkali treatment at room temperature increased the pasting viscosities of both normal and waxy rice starches, whereas at high temperature, it decreased pasting viscosities during hydrothermal treatment. Alkali treatment significantly changed the properties of normal and waxy rice starch by the ionization of hydroxyl groups and the removal of starch granule-associated proteins. Hydrothermal conditions promoted the effect of alkali. The combination of hydrothermal and alkali treatment led to greater changes in starch properties.

5.
Foods ; 13(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38672871

RESUMO

Studying diversity in local barley varieties can help advance novel uses for the grain. Therefore, starch was isolated from nine Ethiopian food barley varieties to determine starch structural, pasting, thermal, and digestibility characteristics, as well as their inter-relationships. The amylose content in the varieties significantly varied from 24.5 to 30.3%, with a coefficient of variation of 6.1%. The chain length distributions also varied significantly, and fa, fb1, fb2, and fb3 ranged from 26.3 to 29.0, 48.0 to 49.7, 15.0 to 15.9, and 7.5 to 9.5%, respectively. Significant variations were also exhibited in absorbance peak ratios, as well as thermal, pasting, and in vitro digestibility properties, with the latter two parameters showing the greatest diversity. Higher contents of amylose and long amylopectin fractions contributed to higher gelatinization temperatures and viscosities and lower digestibility. Structural characteristics showed strong relationships with viscosity, thermal, and in vitro digestibility properties. Cross 41/98 and Dimtu varieties are more suitable in functional food formulations and for bakery products. These results might inspire further studies to suggest target-based starch modifications and new product development.

6.
J Agric Food Chem ; 72(22): 12842-12858, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767652

RESUMO

Granule-associated surface lipids (GASLs) and internal lipids showed different lipid-amylose relationships, contents, and distributions, suggesting their differing biological origins and functions, among waxy, normal, and high-amylose rice starch. The GASL content mainly depended on the pore size, while internal lipids regulated starch biosynthesis, as indicated by correlations of internal lipids with the chain length distribution of amylopectin and amylose content. Of the 1346 lipids detected, 628, 562, and 408 differentially expressed lipids were observed between normal-waxy, high-amylose-waxy, and normal-high-amylose starch, respectively. After the removal of GASLs, the higher lysophospholipid content induced greater decreases in the peak and breakdown viscosity and swelling power, while the highest digestibility increase was found with the highest triacylglycerol content. Thus, different GASL compositions led to different digestibility, swelling, and pasting outcomes. This study sheds new light on the mechanism of the role of GASLs in the structure and properties of starch, as well as in potential modifications and amyloplast membrane development.


Assuntos
Amilose , Digestão , Lipidômica , Lipídeos , Oryza , Amido , Oryza/química , Oryza/metabolismo , Amilose/metabolismo , Amilose/análise , Amilose/química , Lipídeos/química , Amido/química , Amido/metabolismo , Viscosidade
7.
Carbohydr Polym ; 342: 122318, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048212

RESUMO

Rice was collected over the entire grain filling period (about 40 days) to explore the multi-structure evolution and gelatinization behavior changes of starch. During the early stage (DAA 6-14), the significant reduction in lamellar repeat distance (10.04 to 9.68 nm) and relative crystallinity (26.6 % to 22.7 %) was due to initial rapid accumulation of amylose (from 9.38 % to 14.05 %) and short amylopectin chains. Meanwhile, the decreased proportion of aggregation structure resulted in a decrease in the gelatinization temperature and a narrowed range of gelatinization temperature also indicated an increase in homogeneity as starch matured. Gelatinization enthalpy was mainly controlled by aggregation structure, which was negatively and positively related to the amylose content and the degree of order respectively. Peak viscosity of starch pasting increased and reached a maximum (924 cP) at DAA-21 due to larger granule size. Amylose and short amylopectin chains with degree of polymerization 6-12 showed positive and negative correlation with short-term retrogradation ability (setback value) respectively. The dynamics of different scale structure during grain filling had varying degrees of impact on gelatinization properties.


Assuntos
Amilopectina , Amilose , Oryza , Amido , Oryza/química , Amilose/química , Amido/química , Amilopectina/química , Viscosidade , Temperatura , Gelatina/química , Grão Comestível/química
8.
Int J Biol Macromol ; 274(Pt 1): 133238, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897493

RESUMO

Normal and waxy maize starches were treated with mild alkali treatment (pH 8.5, 9.9, 11.3) in two temperature-time combinations (25 °C for 1 h and 50 °C for 18 h) to investigate the effect on starch structure and properties. Mild alkali treatment partly removed the starch granule-associated proteins and lipids of normal (from 0.31 % to 0.24 % and from 0.77 % to 0.55 %, respectively) and waxy maize starches (from 0.22 % to 0.18 % and from 0.24 % to 0.15 %, respectively). Gelatinization enthalpy of waxy maize starch increased with alkali treatment from 16.20 J·g-1 to 21.95 J·g-1, indicating that amylopectin (AP) rearrangement and AP-AP double helices formation might occur. But amylose could inhibit these effects by restricting mobility of amylopectin, and no such changes occurred for normal maize starch. Alkali treatment decreased gelatinization temperature and increased peak and final viscosity. Alkali treatment decreased trough viscosity and increased setback of normal maize starch. The hydrothermal treatment promoted the effect of alkali, attributed to the more rapid molecular motion at higher temperature. Normal and waxy starches showed different changes after alkali treatment, indicating that amylose played an important role in controlling the effect of alkali and hydrothermal treatment, primarily as an obstructer of amylopectin rearrangement in mild alkali treatment.


Assuntos
Álcalis , Amilopectina , Amilose , Amido , Zea mays , Zea mays/química , Amido/química , Álcalis/química , Viscosidade , Amilopectina/química , Amilose/química , Temperatura , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa