Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 6(12): e29486, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22216292

RESUMO

Genotyping mice by DNA based methods is both laborious and costly. As an alternative, we systematically examined fluorescent proteins expressed in the lens as transgenic markers for mice. A set of eye markers has been selected such that double and triple transgenic animals can be visually identified and that fluorescence intensity in the eyes can be used to distinguish heterozygous from homozygous mice. Taken together, these eye markers dramatically reduce the time and cost of genotyping transgenics and empower analysis of genetic interaction.


Assuntos
Biomarcadores/metabolismo , Olho/metabolismo , Proteínas Luminescentes/metabolismo , Animais , Camundongos , Camundongos Transgênicos
2.
PLoS One ; 6(10): e26650, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22039523

RESUMO

Somatic forward genetic screens have the power to interrogate thousands of genes in a single animal. Retroviral and transposon mutagenesis systems in mice have been designed and deployed in somatic tissues for surveying hematopoietic and solid tumor formation. In the context of cancer, the ability to visually mark mutant cells would present tremendous advantages for identifying tumor formation, monitoring tumor growth over time, and tracking tumor infiltrations and metastases into wild-type tissues. Furthermore, locating mutant clones is a prerequisite for screening and analyzing most other somatic phenotypes. For this purpose, we developed a system using the piggyBac (PB) transposon for somatic mutagenesis with an activated reporter and tracker, called PB-SMART. The PB-SMART mouse genetic screening system can simultaneously induce somatic mutations and mark mutated cells using bioluminescence or fluorescence. The marking of mutant cells enable analyses that are not possible with current somatic mutagenesis systems, such as tracking cell proliferation and tumor growth, detecting tumor cell infiltrations, and reporting tissue mutagenesis levels by a simple ex vivo visual readout. We demonstrate that PB-SMART is highly mutagenic, capable of tumor induction with low copy transposons, which facilitates the mapping and identification of causative insertions. We further integrated a conditional transposase with the PB-SMART system, permitting tissue-specific mutagenesis with a single cross to any available Cre line. Targeting the germline, the system could also be used to conduct F1 screens. With these features, PB-SMART provides an integrated platform for individual investigators to harness the power of somatic mutagenesis and phenotypic screens to decipher the genetic basis of mammalian biology and disease.


Assuntos
Elementos de DNA Transponíveis , Genes Reporter , Mutagênese , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa