Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764253

RESUMO

In the field of non-oxide ceramics, the polymer-derived ceramic (PDC) approach appears to be very promising, especially for obtaining easily shaped and homogeneous materials in terms of structure and composition. However, in order to reach a suitable form during the process, it is often necessary to study the rheology of preceramic polymers while they are modified during polymerisation or crosslinking reactions. Given this need in the understanding of the real-time rheology of macromolecules during their synthesis, a rheometer coupled with both an infrared spectrometer and a Raman probe is described as a powerful tool for monitoring in situ synthesised polycarbosilanes. Indeed, this original device allows one to control the viscosity of a hyberbranched polycarbosilane from defined difunctional and tetrafunctional monomers. Meanwhile, it links this evolution to structural modifications in the macromolecular structure (molar masses, dispersity and conformation), based on SEC-MALS analyses, synchronised by the monomer conversion determined by using Raman and infrared spectroscopies, a common denominator of the aforementioned instrumental platform.

2.
Inorg Chem ; 58(24): 16387-16401, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31790218

RESUMO

Crystallization from glass can lead to the stabilization of metastable crystalline phases, which offers an interesting way to unveil novel compounds and control the optical properties of resulting glass-ceramics. Here, we report on a crystallization study of the ZrF4-TeO2 glass system and show that under specific synthesis conditions, a previously unreported Te0.47Zr0.53OxFy zirconium oxyfluorotellurite antiglass phase can be selectively crystallized at the nanometric scale within the 65TeO2-35ZrF4 amorphous matrix. This leads to highly transparent glass-ceramics in both the visible and near-infrared ranges. Under longer heat treatment, the stable cubic ZrTe3O8 phase crystallizes in addition to the previous unreported antiglass phase. The structure, microstructure, and optical properties of 65TeO2-35ZrF4Tm3+-doped glass-ceramics, were investigated in detail by means of X-ray diffraction, scanning and transmission electron microscopies, and 19F, 91Zr, and 125Te NMR, Raman, and photoluminescence spectroscopies. The crystal chemistry study of several single crystals samples by X-ray diffraction evidence that the novel phase, derived from α-UO3 type, corresponds in terms of long-range ordering inside this basic hexagonal/trigonal disordered phase (antiglass) to a complex series of modulated microphases rather than a stoichiometric compound with various superstructures analogous to those observed in the UO3-U3O8 subsystem. These results highlight the peculiar disorder-order phenomenon occurring in tellurite materials.

3.
Inorg Chem ; 57(2): 754-767, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29266938

RESUMO

Recrystallization of amorphous compounds can lead to the stabilization of metastable crystalline phases, which offers an interesting way to unveil novel binary or ternary compounds and control the transport properties of the obtained glass ceramics. Here, we report on a systematic study of the Cu-As-Te glassy system and show that under specific synthesis conditions using the spark-plasma-sintering technique, the α-As2Te3 and ß-As2Te3 binary phases and the previously unreported AsTe3 phase can be selectively crystallized within an amorphous matrix. The microstructures and transport properties of three different glass ceramics, each of them containing one of these phases with roughly the same crystalline fraction (∼30% in volume), were investigated in detail by means of X-ray diffraction, scanning electron microscopy, neutron thermodiffraction, Raman scattering (experimental and lattice-dynamics calculations), and transport-property measurements. The physical properties of the glass ceramics are compared with those of both the parent glasses and the pure crystalline phases that could be successfully synthesized. SEM images coupled with Raman spectroscopy evidence a "coast-to-island" or dendriticlike microstructure with microsized crystallites. The presence of the crystallized phase results in a significant decrease in the electrical resistivity while maintaining the thermal conductivity to low values. This study demonstrates that new compounds with interesting transport properties can be obtained by recrystallization, which in turn provides a tuning parameter for the transport properties of the parent glasses.

4.
Appl Spectrosc ; 73(12): 1361-1369, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31315423

RESUMO

Knowledge of alkaline silicate solutions is crucial in order to optimize geopolymer properties. Geopolymers are new binders resulting from the activation of an aluminosilicate by an alkaline solution. It is well established that the solution reactivity strongly affects the geopolymerization and therefore the geopolymer working properties. As a consequence, an evaluation of the reactivity degree of alkaline silicate solutions prior synthesis is of the utmost interest. However, the determination of the solution reactivity is currently tedious, and for geopolymer commercialization, it would be necessary to find an easy way to determine it. Therefore, Raman spectroscopy, combined with chemometric techniques, is proposed as a solution to easily determine the alkaline silicate solution reactivity. To conduct this investigation, 65 silicate solutions were characterized by Raman spectroscopy, and reference values of their reactivity degree were determined. Finally, principal component analysis and partial least squares regression were performed to build a statistical model able to predict the alkaline silicate solution reactivity from Raman spectra.

5.
Sci Rep ; 8(1): 4640, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545565

RESUMO

We report on the laser emission of the polycrystalline ceramic obtained from the full and congruent crystallization of the parent glass 1Nd3+:75TeO2-12.5Bi2O3-12.5Nb2O5 composition. In particular, the current work underlines the importance of carefully controlling the heat treatment in order to solely crystallize the Bi0.8Nb0.8Te2.4O8 cubic phase and consequently avoid the formation of the BiNbTe2O8 orthorhombic phase that would be detrimental for optical purpose. The structure, microstructure and photoluminescence properties of the resulting transparent tellurite ceramics are characterized. The continuous-wave and gain-switching laser performances reveal that the emission remains perfectly single transversal mode in the range of pump powers explored. The maximum output power achieved was ~28.5 mW, for a pump power threshold of ~67 mW, and with associated efficiency and slope efficiency of ~22.5% and ~50%, respectively. These data definitely stand among the best results obtained so far for bulk laser tellurite materials and thus demonstrate the potential of such polycrystalline transparent ceramics as optically active materials. Finally, the laser emission characteristics in pulsed regime, at low and high repetition rates, are also provided: more than 6.5 W of peak power at a repetition rate of 728 kHz can be obtained.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa