Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 21(4): 1450-1459, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32058700

RESUMO

Evidence is presented that the polysaccharide rhamnogalacturonan I (RGI) can be biosynthesized in remarkably organized branched configurations and surprisingly long versions and can self-assemble into a plethora of structures. AFM imaging has been applied to study the outer mucilage obtained from wild-type (WT) and mutant (bxl1-3 and cesa5-1) Arabidopsis thaliana seeds. For WT mucilage, ordered, multichain structures of the polysaccharide RGI were observed, with a helical twist visible in favorable circumstances. Molecular dynamics (MD) simulations demonstrated the stability of several possible multichain complexes and the possibility of twisted fibril formation. For bxl1-3 seeds, the imaged polymers clearly showed the presence of side chains. These were surprisingly regular and well organized with an average length of ∼100 nm and a spacing of ∼50 nm. The heights of the side chains imaged were suggestive of single polysaccharide chains, while the backbone was on average 4 times this height and showed regular height variations along its length consistent with models of multichain fibrils examined in MD. Finally, in mucilage extracts from cesa5-1 seeds, a minor population of chains in excess of 30 µm long was observed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Polissacarídeos , Sementes
2.
Plant Physiol ; 176(2): 1547-1558, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29150558

RESUMO

A major question in plant biology concerns the specification and functional differentiation of cell types. This is in the context of constraints imposed by networks of cell walls that both adhere cells and contribute to the form and function of developing organs. Here, we report the identification of a glycan epitope that is specific to phloem sieve element cell walls in several systems. A monoclonal antibody, designated LM26, binds to the cell wall of phloem sieve elements in stems of Arabidopsis (Arabidopsis thaliana), Miscanthus x giganteus, and notably sugar beet (Beta vulgaris) roots where phloem identification is an important factor for the study of phloem unloading of Suc. Using microarrays of synthetic oligosaccharides, the LM26 epitope has been identified as a ß-1,6-galactosyl substitution of ß-1,4-galactan requiring more than three backbone residues for optimized recognition. This branched galactan structure has previously been identified in garlic (Allium sativum) bulbs in which the LM26 epitope is widespread throughout most cell walls including those of phloem cells. Garlic bulb cell wall material has been used to confirm the association of the LM26 epitope with cell wall pectic rhamnogalacturonan-I polysaccharides. In the phloem tissues of grass stems, the LM26 epitope has a complementary pattern to that of the LM5 linear ß-1,4-galactan epitope, which is detected only in companion cell walls. Mechanical probing of transverse sections of M x giganteus stems and leaves by atomic force microscopy indicates that phloem sieve element cell walls have a lower indentation modulus (indicative of higher elasticity) than companion cell walls.


Assuntos
Arabidopsis/metabolismo , Beta vulgaris/metabolismo , Galactanos/metabolismo , Poaceae/metabolismo , Anticorpos Monoclonais , Arabidopsis/citologia , Beta vulgaris/citologia , Parede Celular/metabolismo , Epitopos , Galactanos/química , Galactanos/imunologia , Fenômenos Mecânicos , Análise em Microsséries , Microscopia de Força Atômica , Floema/citologia , Floema/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo , Poaceae/citologia
3.
Plant J ; 78(4): 715-22, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24621270

RESUMO

Plant cell walls are complex, multi-macromolecular assemblies of glycans and other molecules and their compositions and molecular architectures vary extensively. Even though the chemistry of cell-wall glycans is now well understood, it remains a challenge to understand the diversity of glycan configurations and interactions in muro, and how these relate to changes in the biological and mechanical properties of cell walls. Here we describe in detail a method called epitope detection chromatography analysis of cell-wall matrix glycan sub-populations and inter-connections. The method combines chromatographic separations with use of glycan-directed monoclonal antibodies as detection tools. The high discrimination capacity and high sensitivity for the detection of glycan structural features (epitopes) provided by use of established monoclonal antibodies allows the study of oligosaccharide motifs on sets of cell-wall glycans in small amounts of plant materials such as a single organ of Arabidopsis thaliana without the need for extensive purification procedures. We describe the use of epitope detection chromatography to assess the heterogeneity of xyloglucan and pectic rhamnogalacturonan I sub-populations and their modulation in A. thaliana organs.


Assuntos
Parede Celular/química , Cromatografia/métodos , Epitopos/análise , Plantas/química , Polissacarídeos/análise , Anticorpos Monoclonais/imunologia , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epitopos/imunologia , Glucanos/análise , Glucanos/química , Pectinas/análise , Pectinas/química , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/genética , Brotos de Planta/metabolismo , Polissacarídeos/química , Polissacarídeos/imunologia , Reprodutibilidade dos Testes , Xilanos/análise , Xilanos/química
4.
Plant Cell Physiol ; 56(11): 2181-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26384432

RESUMO

Rhamnogalacturonan I (RGI) is a pectic polysaccharide composed of a backbone of alternating rhamnose and galacturonic acid residues with side chains containing galactose and/or arabinose residues. The structure of these side chains and the degree of substitution of rhamnose residues are extremely variable and depend on species, organs, cell types and developmental stages. Deciphering RGI function requires extending the current set of monoclonal antibodies (mAbs) directed to this polymer. Here, we describe the generation of a new mAb that recognizes a heterogeneous subdomain of RGI. The mAb, INRA-AGI-1, was produced by immunization of mice with RGI oligosaccharides isolated from potato tubers. These oligomers consisted of highly branched RGI backbones substituted with short side chains. INRA-AGI-1 bound specifically to RGI isolated from galactan-rich cell walls and displayed no binding to other pectic domains. In order to identify its RGI-related epitope, potato RGI oligosaccharides were fractionated by anion-exchange chromatography. Antibody recognition was assessed for each chromatographic fraction. INRA-AGI-1 recognizes a linear chain of (1→4)-linked galactose and (1→5)-linked arabinose residues. By combining the use of INRA-AGI-1 with LM5, LM6 and INRA-RU1 mAbs and enzymatic pre-treatments, evidence is presented of spatial differences in RGI motif distribution within individual cell walls of potato tubers and carrot roots. These observations raise questions about the biosynthesis and assembly of pectin structural domains and their integration and remodeling in cell walls.


Assuntos
Parede Celular/química , Galactanos/imunologia , Pectinas/química , Animais , Daucus carota/química , Epitopos , Galactanos/análise , Camundongos , Raízes de Plantas/química , Raízes de Plantas/citologia , Polissacarídeos/análise , Solanum tuberosum/química
5.
Planta ; 241(3): 669-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25416597

RESUMO

Cell wall polysaccharides of wheat and rice endosperm are an important source of dietary fibre. Monoclonal antibodies specific to cell wall polysaccharides were used to determine polysaccharide dynamics during the development of both wheat and rice grain. Wheat and rice grain present near synchronous developmental processes and significantly different endosperm cell wall compositions, allowing the localisation of these polysaccharides to be related to developmental changes. Arabinoxylan (AX) and mixed-linkage glucan (MLG) have analogous cellular locations in both species, with deposition of AX and MLG coinciding with the start of grain filling. A glucuronoxylan (GUX) epitope was detected in rice, but not wheat endosperm cell walls. Callose has been reported to be associated with the formation of cell wall outgrowths during endosperm cellularisation and xyloglucan is here shown to be a component of these anticlinal extensions, occurring transiently in both species. Pectic homogalacturonan (HG) was abundant in cell walls of maternal tissues of wheat and rice grain, but only detected in endosperm cell walls of rice in an unesterified HG form. A rhamnogalacturonan-I (RG-I) backbone epitope was observed to be temporally regulated in both species, detected in endosperm cell walls from 12 DAA in rice and 20 DAA in wheat grain. Detection of the LM5 galactan epitope showed a clear distinction between wheat and rice, being detected at the earliest stages of development in rice endosperm cell walls, but not detected in wheat endosperm cell walls, only in maternal tissues. In contrast, the LM6 arabinan epitope was detected in both species around 8 DAA and was transient in wheat grain, but persisted in rice until maturity.


Assuntos
Parede Celular/metabolismo , Grão Comestível/metabolismo , Oryza/metabolismo , Polissacarídeos/metabolismo , Triticum/metabolismo , Grão Comestível/crescimento & desenvolvimento , Endosperma/metabolismo , Imunofluorescência , Oryza/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
6.
Planta ; 242(6): 1321-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26208585

RESUMO

MAIN CONCLUSION: The derivation of two sensitive monoclonal antibodies directed to heteroxylan cell wall polysaccharide preparations has allowed the identification of potential inter-linkages between xylan and pectin in potato tuber cell walls and also between xylan and arabinogalactan-proteins in oat grain cell walls. Plant cell walls are complex composites of structurally distinct glycans that are poorly understood in terms of both in muro inter-linkages and developmental functions. Monoclonal antibodies (MAbs) are versatile tools that can detect cell wall glycans with high sensitivity through the specific recognition of oligosaccharide structures. The isolation of two novel MAbs, LM27 and LM28, directed to heteroxylan, subsequent to immunisation with a potato cell wall fraction enriched in rhamnogalacturonan-I (RG-I) oligosaccharides, is described. LM27 binds strongly to heteroxylan preparations from grass cell walls and LM28 binds to a glucuronosyl-containing epitope widely present in heteroxylans. Evidence is presented suggesting that in potato tuber cell walls, some glucuronoxylan may be linked to pectic macromolecules. Evidence is also presented that suggests in oat spelt xylan both the LM27 and LM28 epitopes are linked to arabinogalactan-proteins as tracked by the LM2 arabinogalactan-protein epitope. This work extends knowledge of the potential occurrence of inter-glycan links within plant cell walls and describes molecular tools for the further analysis of such links.


Assuntos
Anticorpos Monoclonais/análise , Parede Celular/metabolismo , Células Vegetais/metabolismo , Polissacarídeos/metabolismo , Anticorpos Monoclonais/metabolismo , Pectinas/metabolismo , Xilanos/metabolismo
7.
Plant J ; 75(6): 1018-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23789903

RESUMO

Plant cell walls are complex configurations of polysaccharides that fulfil a diversity of roles during plant growth and development. They also provide sets of biomaterials that are widely exploited in food, fibre and fuel applications. The pectic polysaccharides, which comprise approximately a third of primary cell walls, form complex supramolecular structures with distinct glycan domains. Rhamnogalacturonan I (RG-I) is a highly structurally heterogeneous branched glycan domain within the pectic supramolecule that contains rhamnogalacturonan, arabinan and galactan as structural elements. Heterogeneous RG-I polymers are implicated in generating the mechanical properties of cell walls during cell development and plant growth, but are poorly understood in architectural, biochemical and functional terms. Using specific monoclonal antibodies to the three major RG-I structural elements (arabinan, galactan and the rhamnogalacturonan backbone) for in situ analyses and chromatographic detection analyses, the relative occurrences of RG-I structures were studied within a single tissue: the tobacco seed endosperm. The analyses indicate that the features of the RG-I polymer display spatial heterogeneity at the level of the tissue and the level of single cell walls, and also heterogeneity at the biochemical level. This work has implications for understanding RG-I glycan complexity in the context of cell-wall architectures and in relation to cell-wall functions in cell and tissue development.


Assuntos
Parede Celular/química , Endosperma/química , Galactanos/química , Nicotiana/química , Pectinas/química , Polissacarídeos/química , Endosperma/citologia , Mapeamento de Epitopos , Nicotiana/citologia
8.
Food Chem ; 246: 275-285, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29291850

RESUMO

The matrix polysaccharides of plant cell walls are diverse and variable sets of polymers influencing cell wall, tissue and organ properties. Focusing on the relatively simple parenchyma tissues of four fruits - tomato, aubergine, strawberry and apple - we have dissected cell wall matrix polysaccharide contents using sequential solubilisation and antibody-based approaches with a focus on pectic homogalacturonan (HG) and rhamnogalacturonan-I (RG-I). Epitope detection in association with anion-exchange chromatography analysis indicates that in all cases solubilized polymers include spectra of HG molecules with unesterified regions that are separable from methylesterified HG domains. In highly soluble fractions, RG-I domains exist in both HG-associated and non-HG-associated forms. Soluble xyloglucan and pectin-associated xyloglucan components were detected in all fruits. Aubergine glycans contain abundant heteroxylan epitopes, some of which are associated with both pectin and xyloglucan. These profiles of polysaccharide heterogeneity provide a basis for future studies of more complex cell and tissue systems.


Assuntos
Parede Celular/química , Frutas/química , Pectinas/análise , Pectinas/química , Fragaria , Glucanos/análise , Solanum lycopersicum , Malus , Polissacarídeos/química , Solanum melongena , Xilanos/análise
9.
Data Brief ; 17: 314-320, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29876399

RESUMO

The data included in this article are related to the research article entitled "Disentangling pectic homogalacturonan and rhamnogalacturonan-I polysaccharides: evidence for sub-populations in fruit parenchyma systems" (Cornuault et al., 2018) [1]. Cell wall properties are an important contributor to fruit texture. These datasets compile textural and immunochemical analysis of polysaccharides of four economically important fruit crops: tomato, strawberry, aubergine and apple with contrasting textures and related taxonomical origins. Cell wall components and their extractability were assessed using characterized monoclonal antibodies. In addition, textural data obtained for the four parenchyma systems show variations in the mechanical properties. The two datasets are a basis to relate cell wall composition and organization to the mechanical properties of the fruit parenchyma tissues.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa