RESUMO
In this work, we studied the microbial community and the physicochemical conditions prevailing in an exploratory oil well, abandoned a century ago, located in the Cahuita National Park (Costa Rica). According to our analysis, Cahuita well is characterized by a continuous efflux of methane and the presence of a mixture of hydrocarbons including phenanthrene/anthracene, fluoranthene, pyrene, dibenzothiophene, tricyclic terpanes, pyrene, sesquiterpenes, sterane, and n-alkanes. Based on the analysis of 16S rRNA gene amplicons, we detected a significant abundance of methylotrophic bacteria such as Methylobacillus (6.3-26.0% of total reads) and Methylococcus (4.1-30.6%) and the presence of common genera associated with hydrocarbon degradation, such as Comamonas (0.8-4.6%), Hydrogenophaga (1.5-3.3%) Rhodobacter (1.0-4.9%), and Flavobacterium (1.1-6.5%). The importance of C1 metabolism in this niche was confirmed by amplifying the methane monooxygenase (MMO)-encoding gene (pmo) from environmental DNA and the isolation of two strains closely related to Methylorubrum rhodesianum and Paracoccus communis with the ability to growth using methanol and formate as sole carbon source respectively. In addition, we were able to isolated 20 bacterial strains from the genera Pseudomonas, Acinetobacter, and Microbacterium which showed the capability to grow using the hydrocarbons detected in the oil well as sole carbon source. This work describes the physicochemical properties and microbiota of an environment exposed to hydrocarbons for 100 years, and it not only represents a contribution to the understanding of microbial communities in environments with permanently high concentrations of these compounds but also has biotechnological implications for bioremediation of petroleum-polluted sites.
Assuntos
Microbiota , Petróleo , Bactérias , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Campos de Petróleo e Gás , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismoRESUMO
Tellurium oxyanions are chemical species of great toxicity and their presence in the environment has increased because of mining industries and photovoltaic and electronic waste. Recovery strategies for this metalloid that are based on micro-organisms are of interest, but further studies of the transport systems and enzymes responsible for implementing tellurium transformations are required because many mechanisms remain unknown. Here, we investigated the involvement in tellurite uptake of the putative phosphate transporter PitB (PP1373) in soil bacterium Pseudomonas putida KT2440. For this purpose, through a method based on the CRISPR/Cas9 system, we generated a strain deficient in the pitB gene and characterized its phenotype on exposing it to varied concentrations of tellurite. Growth curves and transmission electronic microscopy experiments for the wild-type and ΔpitB strains showed that both were able to internalize tellurite into the cytoplasm and reduce the oxyanion to black nano-sized and rod-shaped tellurium particles, although the ΔpitB strain showed an increased resistance to the tellurite toxic effects. At a concentration of 100 µM tellurite, where the biomass formation of the wild-type strain decreased by half, we observed a greater ability of ΔpitB to reduce this oxyanion with respect to the wild-type strain (~38 vs ~16â%), which is related to the greater biomass production of ΔpitB and not to a greater consumption of tellurite per cell. The phenotype of the mutant was restored on over-expressing pitB in trans. In summary, our results indicate that PitB is one of several transporters responsible for tellurite uptake in P. putida KT2440.
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Pseudomonas putida/metabolismo , Telúrio/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Biomassa , Biotransformação , Mutação , Nanoestruturas/química , Nanoestruturas/toxicidade , Proteínas de Transporte de Fosfato/genética , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/crescimento & desenvolvimento , Telúrio/química , Telúrio/toxicidadeRESUMO
The archive of the Universidad de Costa Rica maintains a nineteenth-century French collection of drawings and lithographs in which the biodeterioration by fungi is rampant. Because of nutritional conditions in which these fungi grew, we suspected that they possessed an ability to degrade cellulose. In this work our goal was to isolate and identify the fungal species responsible for the biodegradation of a nineteenth-century art collection and determine their cellulolytic activity. Fungi were isolated using potato-dextrose-agar (PDA) and water-agar with carboxymethyl cellulose (CMC). The identification of the fungi was assessed through DNA sequencing (nrDNA ITS and α-actin regions) complemented with morphological analyses. Assays for cellulolytic activity were conducted with Gram's iodine as dye. Nineteen isolates were obtained, of which seventeen were identified through DNA sequencing to species level, belonging mainly to genera Arthrinium, Aspergillus, Chaetomium, Cladosporium, Colletotrichum, Penicillium and Trichoderma. For two samples that could not be identified through their ITS and α-actin sequences, a morphological analysis was conducted; they were identified as new species, named Periconia epilithographicola sp. nov. and Coniochaeta cipronana sp. nov. Qualitative tests showed that the fungal collection presents important cellulolytic activity.