Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Lipid Res ; 61(7): 983-994, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32398264

RESUMO

Alcohol's impairment of both hepatic lipid metabolism and insulin resistance (IR) are key drivers of alcoholic steatosis, the initial stage of alcoholic liver disease (ALD). Pharmacologic reduction of lipotoxic ceramide prevents alcoholic steatosis and glucose intolerance in mice, but potential off-target effects limit its strategic utility. Here, we employed a hepatic-specific acid ceramidase (ASAH) overexpression model to reduce hepatic ceramides in a Lieber-DeCarli model of experimental alcoholic steatosis. We examined effects of alcohol on hepatic lipid metabolism, body composition, energy homeostasis, and insulin sensitivity as measured by hyperinsulinemic-euglycemic clamp. Our results demonstrate that hepatic ceramide reduction ameliorates the effects of alcohol on hepatic lipid droplet (LD) accumulation by promoting VLDL secretion and lipophagy, the latter of which involves ceramide cross-talk between the lysosomal and LD compartments. We additionally demonstrate that hepatic ceramide reduction prevents alcohol's inhibition of hepatic insulin signaling. These effects on the liver are associated with a reduction in oxidative stress markers and are relevant to humans, as we observe peri- LD ASAH expression in human ALD. Together, our results suggest a potential role for hepatic ceramide inhibition in preventing ALD.


Assuntos
Ceramidas/metabolismo , Etanol/efeitos adversos , Fígado Gorduroso/metabolismo , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Composição Corporal , Homeostase/efeitos dos fármacos , Camundongos , Especificidade de Órgãos , Estresse Oxidativo/efeitos dos fármacos
2.
FASEB J ; 32(1): 130-142, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28864659

RESUMO

Perilipin 2 (PLIN2) is a lipid-droplet protein that is up-regulated in alcoholic steatosis and associated with hepatic accumulation of ceramides, bioactive lipids implicated in alcoholic liver disease pathogenesis. The specific role of ceramide synthetic enzymes in the regulation of PLIN2 and promotion of hepatocellular lipid accumulation is not well understood. We examined the effects of pharmacologic ceramide synthesis inhibition on hepatic PLIN2 expression, steatosis, and glucose and lipid homeostasis in mice with alcoholic steatosis and in ethanol-incubated human hepatoma VL17A cells. In cells, pharmacologic inhibition of ceramide synthase reduced lipid accumulation by reducing PLIN2 RNA stability. The subtype ceramide synthase (CerS)6 was specifically up-regulated in experimental alcoholic steatosis in vivo and in vitro and was up-regulated in zone 3 hepatocytes in human alcoholic steatosis. In vivo ceramide reduction by inhibition of de novo ceramide synthesis reduced PLIN2 and hepatic steatosis in alcohol-fed mice, but only de novo synthesis inhibition, not sphingomyelin hydrolysis, improved glucose tolerance and dyslipidemia. These findings implicate CerS6 as a novel regulator of PLIN2 and suggest that ceramide synthetic enzymes may promote the earliest stage of alcoholic liver disease, alcoholic steatosis.-Williams, B., Correnti, J., Oranu, A., Lin, A., Scott, V., Annoh, M., Beck, J., Furth, E., Mitchell, V., Senkal, C. E., Obeid, L., Carr, R. M. A novel role for ceramide synthase 6 in mouse and human alcoholic steatosis.


Assuntos
Fígado Gorduroso Alcoólico/enzimologia , Proteínas de Membrana/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Animais , Vias Biossintéticas , Linhagem Celular , Ceramidas/biossíntese , Modelos Animais de Doenças , Etanol , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/genética , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Perilipina-2/genética , Perilipina-2/metabolismo , Estabilidade de RNA , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo , Esfingosina N-Aciltransferase/antagonistas & inibidores , Esfingosina N-Aciltransferase/genética , Regulação para Cima/efeitos dos fármacos
3.
J Physiol ; 593(2): 365-83, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25630259

RESUMO

Following partial hepatectomy, the liver initiates a regenerative programme involving hepatocyte priming and replication driven by the coordinated actions of cytokine and growth factors. We investigated the mechanisms underlying adiponectin's (Adn) regulation of liver regeneration through modulation of these mediators. Adn(-/-) mice showed delayed onset of hepatocyte replication, but accelerated cell cycle progression relative to wild-type mice, suggesting Adn has multiple effects fine-tuning the kinetics of liver regeneration. We developed a computational model describing the molecular and physiological kinetics of liver regeneration in Adn(-/-) mice. We employed this computational model to evaluate the underlying regulatory mechanisms. Our analysis predicted that Adn is required for an efficient early cytokine response to partial hepatectomy, but is inhibitory to later growth factor actions. Consistent with this prediction, Adn knockout reduced hepatocyte responses to interleukin-6 during the priming phase, but enhanced growth factor levels through peak hepatocyte replication. By contrast, supraphysiological concentrations of Adn resulting from rosiglitazone treatment suppressed regeneration by reducing growth factor levels during S phase, consistent with computational predictions. Together, these results revealed that Adn fine-tunes the progression of liver regeneration through dynamically modulating molecular mediator networks and cellular interactions within the liver.


Assuntos
Adiponectina/metabolismo , Regeneração Hepática , Fígado/metabolismo , Modelos Biológicos , Adiponectina/genética , Adiponectina/farmacologia , Animais , Proliferação de Células , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Interleucina-6/metabolismo , Fígado/citologia , Fígado/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
4.
Am J Physiol Gastrointest Liver Physiol ; 306(11): G959-73, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24742988

RESUMO

Hepatosteatosis, the ectopic accumulation of lipid in the liver, is one of the earliest clinical signs of alcoholic liver disease (ALD). Alcohol-dependent deregulation of liver ceramide levels as well as inhibition of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor α (PPAR-α) activity are thought to contribute to hepatosteatosis development. Adiponectin can regulate lipid handling in the liver and has been shown to reduce ceramide levels and activate AMPK and PPAR-α. However, the mechanisms by which adiponectin prevents alcoholic hepatosteatosis remain incompletely characterized. To address this question, we assessed ALD progression in wild-type (WT) and adiponectin knockout (KO) mice fed an ethanol-containing liquid diet or isocaloric control diet. Adiponectin KO mice relative to WT had increased alcohol-induced hepatosteatosis and hepatomegaly, similar modest increases in serum alanine aminotransferase, and reduced liver TNF. Restoring circulating adiponectin levels using recombinant adiponectin ameliorated alcohol-induced hepatosteatosis and hepatomegaly in adiponectin KO mice. Alcohol-fed WT and adiponectin KO animals had equivalent reductions in AMPK protein and PPAR-α DNA binding activity compared with control-fed animals. No difference in P-AMPK/AMPK ratio was detected, suggesting that alcohol-dependent deregulation of AMPK and PPAR-α in the absence of adiponectin are not primary causes of the observed increase in hepatosteatosis in these animals. By contrast, alcohol treatment increased liver ceramide levels in adiponectin KO but not WT mice. Importantly, pharmacological inhibition of de novo ceramide synthesis in adiponectin KO mice abrogated alcohol-mediated increases in liver ceramides, steatosis, and hepatomegaly. These data suggest that adiponectin reduces alcohol-induced steatosis and hepatomegaly through regulation of liver ceramides, but its absence does not exacerbate alcohol-induced liver damage.


Assuntos
Adiponectina/metabolismo , Adiponectina/uso terapêutico , Etanol/toxicidade , Fígado Gorduroso/induzido quimicamente , Hepatomegalia/induzido quimicamente , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Adiponectina/administração & dosagem , Adiponectina/genética , Animais , Biomarcadores/metabolismo , Ingestão de Energia , Ácidos Graxos Monoinsaturados , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/patologia , Hepatomegalia/tratamento farmacológico , Hepatomegalia/patologia , Camundongos , Camundongos Knockout , PPAR alfa/genética , PPAR alfa/metabolismo
5.
J Vis Exp ; (146)2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31058903

RESUMO

Lipid droplets (LDs) are bioactive organelles found within the cytosol of the most eukaryotic and some prokaryotic cells. LDs are composed of neutral lipids encased by a monolayer of phospholipids and proteins. Hepatic LD lipids, such as ceramides, and proteins are implicated in several diseases that cause hepatic steatosis. Although previous methods have been established for LD isolation, they require a time-consuming preparation of reagents and are not designed for the isolation of multiple subcellular compartments. We sought to establish a new protocol to enable the isolation of LDs, endoplasmic reticulum (ER), and lysosomes from a single mouse liver. Further, all reagents used in the protocol presented here are commercially available and require minimal reagent preparation without sacrificing LD purity. Here we present data comparing this new protocol to a standard sucrose gradient protocol, demonstrating comparable purity, morphology, and yield. Additionally, we can isolate ER and lysosomes using the same sample, providing detailed insight into the formation and intracellular flux of lipids and their associated proteins.


Assuntos
Fracionamento Celular/métodos , Gotículas Lipídicas , Fígado/ultraestrutura , Organelas , Animais , Retículo Endoplasmático , Feminino , Lisossomos , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipídeos/metabolismo , Proteínas/metabolismo
6.
FASEB J ; 21(13): 3479-89, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17586730

RESUMO

The transposon piggyBac from the genome of the cabbage looper moth Trichoplusia ni has been observed in the laboratory to jump into the genomes of key model and pathogenic eukaryote organisms including mosquitoes, planarians, human and other mammalian cells, and the malaria parasite Plasmodium falciparum. Introduction of exogenous transposons into schistosomes has not been reported but transposon-mediated transgenesis of schistosomes might supersede current methods for functional genomics of this important human pathogen. In the present study we examined whether the piggyBac transposon could deliver reporter transgenes into the genome of Schistosoma mansoni parasites. A piggyBac donor plasmid modified to encode firefly luciferase under control of schistosome gene promoters was introduced along with 7-methylguanosine capped RNAs encoding piggyBac transposase into cultured schistosomula by square wave electroporation. The activity of the helper transposase mRNA was confirmed by Southern hybridization analysis of genomic DNA from the transformed schistosomes, and hybridization signals indicated that the piggyBac transposon had integrated into numerous sites within the parasite chromosomes. piggyBac integrations were recovered by retrotransposon-anchored PCR, revealing characteristic piggyBac TTAA footprints in the vicinity of the endogenous schistosome retrotransposons Boudicca, SR1, and SR2. This is the first report of chromosomal integration of a transgene and somatic transgenesis of this important human pathogen, in this instance accomplished by mobilization of the piggyBac transposon.


Assuntos
Elementos de DNA Transponíveis , Genes de Protozoários , Schistosoma mansoni/genética , Transgenes , Animais , Sequência de Bases , Primers do DNA , Eletroporação , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas
7.
Sci Rep ; 8(1): 12923, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150688

RESUMO

Obesogenic lipids and the sphingolipid ceramide have been implicated as potential cofactors in alcoholic liver disease (ALD) patients. However, the mechanisms by which these lipids modulate lipid trafficking in ethanol-treated human liver cells to promote steatosis, an early stage of ALD, are poorly understood. We measured fatty acid (FA) uptake, triglyceride export, FA synthesis and FA oxidation in human hepatoma (VL-17A) cells in response to ethanol and the exogenous lipids oleate, palmitate and C2 ceramide. We found that in combination with ethanol, both oleate and palmitate promote lipid droplet accumulation while C2 ceramide inhibits lipid droplet accumulation by enhancing FA oxidation. Further, using both a pharmacologic and siRNA approach to reduce peroxisome proliferator-activated receptors α (PPARα) gene expression, we demonstrate that C2 ceramide abrogates ethanol-mediated suppression of FA oxidation through an indirect PPARα mechanism. Together, these data suggest that lipids interact differentially with ethanol to modulate hepatocellular lipid droplet accumulation and may provide novel targets for preventing the earliest stage of alcoholic liver disease, alcoholic steatosis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Ceramidas/farmacologia , Etanol/farmacologia , Neoplasias Hepáticas/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Western Blotting , Carcinoma Hepatocelular/genética , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/genética , Oxirredução/efeitos dos fármacos , Perilipina-2/genética , Perilipina-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
8.
Int J Parasitol ; 37(10): 1107-15, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17482194

RESUMO

We sought to investigate the efficacy of electroporation for the introduction of plasmid-based DNA constructs into Schistosoma mansoni, and expanded our study to examine parameters governing transgene expression, including requirements of a 5' and 3' flanking sequence, as well as parasite developmental effects on transgene expression. We used luciferase as a reporter gene for this application. Our data show that electroporation allows the transfection of immature schistosomes, and defines 5' promoter sequence from the schistosome actin gene (SmAct1.1), coupled promiscuously with various 3' terminator sequences, as a powerful promoter of transgene expression in growing, but not early non-growing, schistosomula. The methodology described herein will facilitate ectopic expression of genes of interest in schistosomes.


Assuntos
Animais Geneticamente Modificados , Eletroporação/métodos , Regiões Promotoras Genéticas/genética , Schistosoma mansoni/genética , Transfecção/métodos , Transgenes/genética , Animais , Células Cultivadas , Expressão Gênica , Schistosoma mansoni/citologia , Fatores de Tempo
9.
Nat Commun ; 7: 10955, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26956930

RESUMO

Mitochondrial Ca(2+) uptake through the recently discovered Mitochondrial Calcium Uniporter (MCU) is controlled by its gatekeeper Mitochondrial Calcium Uptake 1 (MICU1). However, the physiological and pathological role of MICU1 remains unclear. Here we show that MICU1 is vital for adaptation to postnatal life and for tissue repair after injury. MICU1 knockout is perinatally lethal in mice without causing gross anatomical defects. We used liver regeneration after partial hepatectomy as a physiological stress response model. Upon MICU1 loss, early priming is unaffected, but the pro-inflammatory phase does not resolve and liver regeneration fails, with impaired cell cycle entry and extensive necrosis. Ca(2+) overload-induced mitochondrial permeability transition pore (PTP) opening is accelerated in MICU1-deficient hepatocytes. PTP inhibition prevents necrosis and rescues regeneration. Thus, our study identifies an unanticipated dependence of liver regeneration on MICU1 and highlights the importance of regulating MCU under stress conditions when the risk of Ca(2+) overload is elevated.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Regeneração Hepática , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Sobrevivência Celular , Feminino , Hepatócitos/metabolismo , Humanos , Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Poro de Transição de Permeabilidade Mitocondrial
10.
Mol Biochem Parasitol ; 143(2): 209-15, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16076506

RESUMO

Schistosoma mansoni is an important flatworm parasite of man that has remained intractable to experimental analyses of gene function. We have developed an approach for using dsRNA to target schistosome transcripts for RNA interference, and used it to address the role of cathepsin B (SmCB1), a cysteine protease that has been proposed to play a central role in hemoglobin digestion in the schistosome gut. Electroporation of 3 h old larval schistosomes with SmCB1-specific dsRNA (SmCB1-dsRNA) resulted in a greater than 10-fold reduction in SmCB1 transcript levels that persisted for >20 days. RNAi mediated reductions in transcript levels led to associated reductions in SmCB1 enzyme activity. Schistosomes treated with SmCB1-dsRNA were viable and developed intestinal heme pigmentation indicative of hemoglobin digestion, but showed significant growth retardation when compared to control parasites, indicating that SmCB1 function is not essential for hemoglobin digestion but is necessary for normal parasite growth. This effect on growth was apparent when parasites were maintained in culture or introduced into mammalian hosts. The report sheds new light on the role of SmCB1 and provides a template for using RNAi to examine gene function in the mammal-parasitic stages of schistosomes during early development in vitro and in vivo.


Assuntos
Catepsina B/genética , Catepsina B/fisiologia , Interferência de RNA , Schistosoma mansoni/crescimento & desenvolvimento , Animais , Catepsina B/antagonistas & inibidores , Eletroporação , Proteínas de Helminto/antagonistas & inibidores , Proteínas de Helminto/genética , Proteínas de Helminto/fisiologia , Morfogênese , RNA de Cadeia Dupla/genética , RNA de Helmintos/genética , RNA Mensageiro/análise , Schistosoma mansoni/anatomia & histologia , Schistosoma mansoni/genética
11.
Ann N Y Acad Sci ; 1353: 1-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25998863

RESUMO

Alcoholic liver disease (ALD) is the number one cause of liver failure worldwide; its management costs billions of healthcare dollars annually. Since the advent of the obesity epidemic, insulin resistance (IR) and diabetes have become common clinical findings in patients with ALD; and the development of IR predicts the progression from simple steatosis to cirrhosis in ALD patients. Both clinical and experimental data implicate the impairment of several mediators of insulin signaling in ALD, and experimental data suggest that insulin-sensitizing therapies improve liver histology. This review explores the contribution of impaired insulin signaling in ALD and summarizes the current understanding of the synergistic relationship between alcohol and nutrient excess in promoting hepatic inflammation and disease.


Assuntos
Resistência à Insulina , Hepatopatias Alcoólicas/fisiopatologia , Animais , Feminino , Humanos , Insulina/metabolismo , Hepatopatias Alcoólicas/metabolismo , Masculino , Transdução de Sinais
12.
Mol Biochem Parasitol ; 137(1): 75-9, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15279953

RESUMO

Despite their significance in human and veterinary medicine, and the ability to maintain the parasites in the mouse, relatively little functional detail is available regarding the biology of schistosomes. This deficit is due largely to the lack of well-developed molecular tools for manipulating gene expression in these parasites. Here, we describe an electroporation protocol that provides a routine approach for efficiently introducing nucleic acids into schistosomes. Using luciferase-encoding RNA for electroporation, and luciferase activity as a read-out, we established 400 microg/ml of RNA, and a 20 ms pulse at 125 V using a square wave electroporation generator to be optimal for electroporating schistosomes. Under these conditions schistosomula from 1 hr to 18 hr old could be successfully electroporated, the majority of parasites within a population expressed the introduced RNA, and acute mortality was negligible. Electroporation, as described here, makes possible experimental studies using transiently expressed constitutively active and/or dominant negative mutant proteins, etc. In addition, the finding that electroporation can be used to introduce RNA into schistosomula raises the possibility of using this approach to introduce either DNA constructs or dsRNA sequences, both of which might be expected to have longer-term, ideally inheritable, effects.


Assuntos
Eletroporação , Expressão Gênica , RNA/metabolismo , Schistosoma mansoni/genética , Transgenes , Animais , Genes Reporter , Luciferases/genética , Luciferases/metabolismo , RNA/genética
13.
J Bacteriol ; 184(12): 3338-47, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12029051

RESUMO

Phase variation of the outer membrane protein Ag43 in E. coli requires deoxyadenosine methylase (Dam) and OxyR. Previously, it was shown that OxyR is required for repression of the Ag43-encoding gene, agn43, and that Dam-dependent methylation of three GATC target sequences in the regulatory region abrogates OxyR binding. Here we report further characterization of agn43 transcription and its regulation. Transcription was initiated from a sigma(70)-dependent promoter at the G residue of the upstream GATC sequence. Template DNA and RNA polymerase were sufficient to obtain transcription in vitro, but DNA methylation enhanced the level of transcription. Analyses of transcription in vivo of agn'-lacZ with mutated Dam target sequences support this conclusion. Since methylation also abrogates OxyR binding, this indicates that methylation plays a dual role in facilitating agn43 transcription. In vitro transcription from an unmethylated template was repressed by OxyR(C199S), which resembles the reduced form of OxyR. Consistent with this and the role of Dam in OxyR binding, OxyR(C199S) protected from DNase I digestion the agn43 regulatory region from -16 to +42, which includes the three GATC sequences. Deletion analyses of the regulatory region showed that a 101-nucleotide region of the agn43 regulatory region containing the promoter and this OxyR binding region was sufficient for Dam- and OxyR-dependent phase variation


Assuntos
Adesinas Bacterianas , Antígenos de Bactérias , Proteínas da Membrana Bacteriana Externa/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Fatores de Transcrição/metabolismo , Adesinas de Escherichia coli , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Sequência de Bases , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Fatores de Transcrição/genética , Transcrição Gênica
14.
Mol Microbiol ; 44(2): 521-32, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11972788

RESUMO

In Escherichia coli, phase variation of the outer membrane protein Ag43 encoded by the agn43 gene is mediated by DNA methylation and the global regulator OxyR. Transcription of agn43 occurs (ON phase) when three Dam target sequences in the agn43 regulatory region are methylated, which prevents the repressor OxyR from binding. Conversely, transcription is repressed (OFF) when these Dam target sequences are unmethylated and OxyR binds. A change in expression phase requires a concomitant change in the DNA methylation state of these Dam target sequences. To gain insight into the process of inheritance of the expression phase and the DNA methylation state, protein-DNA interactions at agn43 were examined. Binding of OxyR at agn43 was sufficient to protect the three GATC sequences contained within its binding site from Dam-dependent methylation in vitro, suggesting that no other factors are required to maintain the unmethylated state and OFF phase. To maintain the methylated state of the ON phase, however, Dam must access the hemimethylated agn43 region after DNA replication, and OxyR binding must not occur. OxyR bound hemimethylated agn43 DNA, but the affinity was severalfold lower than for unmethylated DNA. This presumably contributes to the maintenance of the methylated state but, at the same time, may allow for infrequent OxyR binding and a switch to the OFF phase. Hemimethylated agn43 DNA was also a binding substrate for the sequestration protein SeqA. Thus, SeqA, OxyR and Dam may compete for the same hemimethylated agn43 DNA that is formed after DNA replication in an ON phase cell. In isolates with a mutant seqA allele, agn43 phase variation rates were altered and resulted in a bias to the OFF phase. In part, this can be attributed to the observed decrease in the level of DNA methylation in the seqA mutant.


Assuntos
Adesinas Bacterianas , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Escherichia coli/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Fatores de Transcrição/genética , Adesinas de Escherichia coli , Sequência de Bases , Sítios de Ligação , Metilação de DNA , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Cinética , Dados de Sequência Molecular , Proteínas Repressoras/genética , Proteínas Repressoras/isolamento & purificação , Proteínas Repressoras/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Transcrição Gênica
15.
J Bacteriol ; 185(7): 2203-9, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12644490

RESUMO

OxyR is a DNA binding protein that differentially regulates a cell's response to hydrogen peroxide-mediated oxidative stress. We previously reported that the reduced form of OxyR is sufficient for repression of transcription of agn43 from unmethylated template DNA, which is essential for deoxyadenosine methylase (Dam)- and OxyR-dependent phase variation of agn43. Here we provide evidence that the oxidized form of OxyR [OxyR(ox)] also represses agn43 transcription. In vivo, we found that exogenous addition of hydrogen peroxide, sufficient to oxidize OxyR, did not affect the expression of agn43. OxyR(ox) repressed in vitro transcription but only from an unmethylated agn43 template. The -10 sequence of the promoter and three Dam target sequences were protected in an in vitro DNase I footprint assay by OxyR(ox). Furthermore, OxyR(ox) bound to the agn43 regulatory region DNA with an affinity similar to that for the regulatory regions of katG and oxyS, which are activated by OxyR(ox), indicating that binding at agn43 can occur at biologically relevant concentrations. OxyR-dependent regulation of Ag43 expression is therefore unusual in firstly that OxyR binding at agn43 is dependent on the methylation state of Dam target sequences in its binding site and secondly that OxyR-dependent repression appears to be independent of hydrogen-peroxide mediated oxidative stress and the oxidation state of OxyR.


Assuntos
Adesinas Bacterianas , Antígenos de Bactérias , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias , Proteínas de Ligação a DNA , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Adesinas de Escherichia coli , Proteínas da Membrana Bacteriana Externa/efeitos dos fármacos , Sítios de Ligação , Pegada de DNA/métodos , Metilação de DNA , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Mutação , Oxirredução , Estresse Oxidativo , Peroxidases/genética , Peroxidases/metabolismo , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/efeitos dos fármacos , Proteínas Repressoras/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa